IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i8p1493-d1203804.html
   My bibliography  Save this article

Physiological and Molecular Analysis Revealed the Role of Silicon in Modulating Salinity Stress in Mung Bean

Author

Listed:
  • Musa Al Murad

    (Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
    School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India)

  • Sowbiya Muneer

    (Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India)

Abstract

Salinity stress acts as a significant deterrent in the course of optimal plant growth and productivity, and mung bean, being a relay crop in the cereal cropping system, is severely affected by salinity. Silicon (Si), on the other hand, has exhibited promising outcomes with regards to alleviating salinity stress. In order to understand the critical mechanisms underlying mung bean ( Vigna radiata L.) tolerance towards salt stress, this study examined the effects of different salinity concentrations on antioxidant capacity, proteome level alterations, and influence on Si-transporter and salt-responsive genes. Salinity stress was seen to effect the gaseous exchange machinery, decrease the soluble protein and phenolic content and NR activity, and increase the accumulation of reactive oxygen species. An efficient regulation of stomatal opening upon Si application hints towards proficient stomatal conductance and CO 2 fixation, resulting in efficient photosynthesis leading to proficient plant growth. The soluble protein and phenolic content showed improved levels upon Si supplementation, which indicates an optimal solute transport system from source to sink. The content of superoxide radicals showed a surge under salinity stress treatment, but efficient scavenging of superoxide radicles was noted under Si supplementation. Salinity stress exhibited more damaging effects on root NR activity, which was notably enhanced upon Si supplementation. Moreover, the beneficial role of Si was further substantiated as there was notable Si accumulation in the leaves and roots of salinity-stressed mung bean plants. Furthermore, Si stimulated competent ROS scavenging by reinforcing the antioxidant enzyme activity, as well coordinating with their isozyme activity, as expressed by the varying band intensities. Similarly, the Si-mediated increase in peroxidase activity may reveal changes in the mechanical characteristics of the cell wall, which are in turn associated with salinity stress adaptation. Proteomic investigations revealed the upregulation or downregulation of several proteins, which were thereafter identified by LC−MS/MS. About 45 proteins were identified and were functionally classified into photosynthesis (24%), metabolic process (19%), redox homeostasis (12%), transmembrane transport (10%), stress response (7%), and transcription regulation (4%). The gene expression analysis of the silicon transporter genes ( Lsi1 , Lsi2 , and Lsi3 ) and SOS pathway genes ( SOS1 , SOS2, and SOS3 ) indicated the role of silicon in mitigating salinity stress. Hence, the findings of this study can facilitate a profound understanding of the potential mechanisms adopted by mung bean due to exogenous Si application during salinity stress.

Suggested Citation

  • Musa Al Murad & Sowbiya Muneer, 2023. "Physiological and Molecular Analysis Revealed the Role of Silicon in Modulating Salinity Stress in Mung Bean," Agriculture, MDPI, vol. 13(8), pages 1-28, July.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1493-:d:1203804
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/8/1493/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/8/1493/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jian Feng Ma & Naoki Yamaji & Namiki Mitani & Kazunori Tamai & Saeko Konishi & Toru Fujiwara & Maki Katsuhara & Masahiro Yano, 2007. "An efflux transporter of silicon in rice," Nature, Nature, vol. 448(7150), pages 209-212, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nehal M. Elekhtyar & Arwa A. AL-Huqail, 2023. "Influence of Chemical, Organic, and Biological Silicon Fertilization on Physiological Studies of Egyptian Japonica Green Super Rice ( Oryza sativa L.)," Sustainability, MDPI, vol. 15(17), pages 1-15, August.
    2. Protima Dhar & Kazuhiro Kobayashi & Kazuhiro Ujiie & Fumihiko Adachi & Junko Kasuga & Ikuko Akahane & Tomohito Arao & Shingo Matsumoto, 2020. "The Increase in the Arsenic Concentration in Brown Rice Due to High Temperature during the Ripening Period and Its Reduction by Silicate Material Treatment," Agriculture, MDPI, vol. 10(7), pages 1-16, July.
    3. Ya Wang & Chengqiao Shi & Kang Lv & Youqing Li & Jinjin Cheng & Xiaolong Chen & Xianwen Fang & Xiangyang Yu, 2019. "Genotypic Variation in Nickel Accumulation and Translocation and Its Relationships with Silicon, Phosphorus, Iron, and Manganese among 72 Major Rice Cultivars from Jiangsu Province, China," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    4. Rahul Beniwal & Radheshyam Yadav & Wusirika Ramakrishna, 2023. "Multifarious Effects of Arsenic on Plants and Strategies for Mitigation," Agriculture, MDPI, vol. 13(2), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1493-:d:1203804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.