VLDNet: An Ultra-Lightweight Crop Disease Identification Network
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Xiaopeng Li & Shuqin Li, 2022. "Transformer Help CNN See Better: A Lightweight Hybrid Apple Disease Identification Model Based on Transformers," Agriculture, MDPI, vol. 12(6), pages 1-16, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jie Ding & Cheng Zhang & Xi Cheng & Yi Yue & Guohua Fan & Yunzhi Wu & Youhua Zhang, 2023. "Method for Classifying Apple Leaf Diseases Based on Dual Attention and Multi-Scale Feature Extraction," Agriculture, MDPI, vol. 13(5), pages 1-19, April.
- Xiaopeng Li & Jinzhi Du & Jialin Yang & Shuqin Li, 2022. "When Mobilenetv2 Meets Transformer: A Balanced Sheep Face Recognition Model," Agriculture, MDPI, vol. 12(8), pages 1-14, July.
- Haiping Si & Mingchun Li & Weixia Li & Guipei Zhang & Ming Wang & Feitao Li & Yanling Li, 2024. "A Dual-Branch Model Integrating CNN and Swin Transformer for Efficient Apple Leaf Disease Classification," Agriculture, MDPI, vol. 14(1), pages 1-20, January.
- Bulent Tugrul & Elhoucine Elfatimi & Recep Eryigit, 2022. "Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review," Agriculture, MDPI, vol. 12(8), pages 1-21, August.
More about this item
Keywords
disease identification; lightweight model; reparameterization; CNN;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1482-:d:1203169. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.