Tea Tree Pest Detection Algorithm Based on Improved Yolov7-Tiny
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yuzhe Bai & Fengjun Hou & Xinyuan Fan & Weifan Lin & Jinghan Lu & Junyu Zhou & Dongchen Fan & Lin Li, 2023. "A Lightweight Pest Detection Model for Drones Based on Transformer and Super-Resolution Sampling Techniques," Agriculture, MDPI, vol. 13(9), pages 1-23, September.
- Xiaomei Gao & Gang Wang & Jiangtao Qi & Qingxia (Jenny) Wang & Meiqi Xiang & Kexin Song & Zihao Zhou, 2024. "Improved YOLO v7 for Sustainable Agriculture Significantly Improves Precision Rate for Chinese Cabbage ( Brassica pekinensis Rupr.) Seedling Belt (CCSB) Detection," Sustainability, MDPI, vol. 16(11), pages 1-20, June.
- Wenji Yang & Xiaoying Qiu, 2024. "A Novel Crop Pest Detection Model Based on YOLOv5," Agriculture, MDPI, vol. 14(2), pages 1-23, February.
- Yaxin Wang & Xinyuan Liu & Fanzhen Wang & Dongyue Ren & Yang Li & Zhimin Mu & Shide Li & Yongcheng Jiang, 2023. "Self-Attention-Mechanism-Improved YoloX-S for Briquette Biofuels Object Detection," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
- Juanli Jing & Menglin Zhai & Shiqing Dou & Lin Wang & Binghai Lou & Jichi Yan & Shixin Yuan, 2024. "Optimizing the YOLOv7-Tiny Model with Multiple Strategies for Citrus Fruit Yield Estimation in Complex Scenarios," Agriculture, MDPI, vol. 14(2), pages 1-16, February.
More about this item
Keywords
Yolov7-tiny; DCNv3; Biformer; tea tree pest identification; soft-NMS;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:1031-:d:1142915. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.