IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i4p916-d1129631.html
   My bibliography  Save this article

Non-Destructive Appraisal of Macro- and Micronutrients in Persimmon Leaves Using Vis/NIR Hyperspectral Imaging

Author

Listed:
  • Maylin Acosta

    (Centro Para el Desarrollo de la Agricultura Sostenible, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, km 10.7, Moncada, 46113 Valencia, Spain)

  • Isabel Rodríguez-Carretero

    (Centro Para el Desarrollo de la Agricultura Sostenible, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, km 10.7, Moncada, 46113 Valencia, Spain)

  • José Blasco

    (Centro de Agroingeniería, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, km 10.7, Moncada, 46113 Valencia, Spain)

  • José Miguel de Paz

    (Centro Para el Desarrollo de la Agricultura Sostenible, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, km 10.7, Moncada, 46113 Valencia, Spain)

  • Ana Quiñones

    (Centro Para el Desarrollo de la Agricultura Sostenible, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, km 10.7, Moncada, 46113 Valencia, Spain)

Abstract

Visible and near-infrared (Vis/NIR) hyperspectral imaging (HSI) was used for rapid and non-destructive determination of macro- and micronutrient contents in persimmon leaves. Hyperspectral images of 687 leaves were acquired in the 500–980 nm range over 6 months, covering a complete vegetative cycle. The average reflectance spectrum of each leaf was extracted, and foliar ionomic analysis was used as a reference method to determine the actual concentration of the nutrients in the leaves. Analyses were performed via emission spectrometry (ICP-OES) for macro- and micronutrients after microwave digestion and using the Kjeldahl method to quantify nitrogen. Partial least square regression (PLS-R) was used to predict the nutrient concentration based on spectral data from the leaf using actual values of each element as predictor variables. Several methods were used to pre-process the spectra, including Savitzky–Golay (SG) smoothing, standard normal variate (SNV) and first (1D) and second derivatives (2D). Seventy-five percent of the samples were used to calibrate and validate the model by cross-validation, whereas the remaining twenty-five % were used as an independent test set. The best performance of the models for the test set achieved an R 2 = 0.80 for nitrogen. Results were also satisfactory for phosphorous, calcium, magnesium and boron, with determination coefficient R 2 values of 0.63, 0.66, 0.58 and 0.69, respectively. For the other nutrients, lower prediction rates were attained (R 2 = 0.48 for potassium, R 2 = 0.38 for iron, R 2 = 0.24 for copper, R 2 = 0.23 for zinc and R 2 = 0.22 for manganese). The variable importance in projection (VIP) was used to extract the most influential bands for the best-predicted nutrients, which were N, K and B.

Suggested Citation

  • Maylin Acosta & Isabel Rodríguez-Carretero & José Blasco & José Miguel de Paz & Ana Quiñones, 2023. "Non-Destructive Appraisal of Macro- and Micronutrients in Persimmon Leaves Using Vis/NIR Hyperspectral Imaging," Agriculture, MDPI, vol. 13(4), pages 1-12, April.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:916-:d:1129631
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/4/916/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/4/916/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergio Cubero & Ester Marco-Noales & Nuria Aleixos & Silvia Barbé & Jose Blasco, 2020. "RobHortic: A Field Robot to Detect Pests and Diseases in Horticultural Crops by Proximal Sensing," Agriculture, MDPI, vol. 10(7), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uztürk, Deniz & Büyüközkan, Gülçin, 2022. "Smart Agriculture Technology Evaluation: A Linguistic-based MCDM Methodology," Agri-Tech Economics Papers 337128, Harper Adams University, Land, Farm & Agribusiness Management Department.
    2. Uztürk, Deniz & Büyüközkan, Gülçin, 2022. "Smart Agriculture Technology Evaluation: A Linguistic-based MCDM Methodology," Land, Farm & Agribusiness Management Department 337128, Harper Adams University, Land, Farm & Agribusiness Management Department.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:916-:d:1129631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.