IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i2p360-d1054266.html
   My bibliography  Save this article

Spatio-Temporal Semantic Data Model for Precision Agriculture IoT Networks

Author

Listed:
  • Mario San Emeterio de la Parte

    (Departamento de Ingeniería Telemática y Electrónica (DTE), Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación (ETSIST), Universidad Politécnica de Madrid (UPM), C/Nikola Tesla, s/n, 28031 Madrid, Spain)

  • Sara Lana Serrano

    (Departamento de Ingeniería Telemática y Electrónica (DTE), Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación (ETSIST), Universidad Politécnica de Madrid (UPM), C/Nikola Tesla, s/n, 28031 Madrid, Spain)

  • Marta Muriel Elduayen

    (Departamento de Ingeniería Telemática y Electrónica (DTE), Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación (ETSIST), Universidad Politécnica de Madrid (UPM), C/Nikola Tesla, s/n, 28031 Madrid, Spain)

  • José-Fernán Martínez-Ortega

    (Departamento de Ingeniería Telemática y Electrónica (DTE), Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación (ETSIST), Universidad Politécnica de Madrid (UPM), C/Nikola Tesla, s/n, 28031 Madrid, Spain)

Abstract

In crop and livestock management within the framework of precision agriculture, scenarios full of sensors and devices are deployed, involving the generation of a large volume of data. Some solutions require rapid data exchange for action or anomaly detection. However, the administration of this large amount of data, which in turn evolves over time, is highly complicated. Management systems add long-time delays to the spatio-temporal data injection and gathering. This paper proposes a novel spatio-temporal semantic data model for agriculture. To validate the model, data from real livestock and crop scenarios, retrieved from the AFarCloud smart farming platform, are modeled according to the proposal. Time-series Database (TSDB) engine InfluxDB is used to evaluate the model against data management. In addition, an architecture for the management of spatio-temporal semantic agricultural data in real-time is proposed. This architecture results in the DAM&DQ system responsible for data management as semantic middleware on the AFarCloud platform. The approach of this proposal is in line with the EU data-driven strategy.

Suggested Citation

  • Mario San Emeterio de la Parte & Sara Lana Serrano & Marta Muriel Elduayen & José-Fernán Martínez-Ortega, 2023. "Spatio-Temporal Semantic Data Model for Precision Agriculture IoT Networks," Agriculture, MDPI, vol. 13(2), pages 1-28, February.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:360-:d:1054266
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/2/360/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/2/360/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raul Palma & Ioanna Roussaki & Till Döhmen & Rob Atkinson & Soumya Brahma & Christoph Lange & George Routis & Marcin Plociennik & Szymon Mueller, 2022. "Agricultural Information Model," Springer Optimization and Its Applications, in: Dionysis D. Bochtis & Claus Grøn Sørensen & Spyros Fountas & Vasileios Moysiadis & Panos M. Pardalos (ed.), Information and Communication Technologies for Agriculture—Theme III: Decision, pages 3-36, Springer.
    2. Corentin Leroux & Hazaël Jones & Léo Pichon & Serge Guillaume & Julien Lamour & James Taylor & Olivier Naud & Thomas Crestey & Jean-Luc Lablee & Bruno Tisseyre, 2018. "GeoFIS: An Open Source, Decision-Support Tool for Precision Agriculture Data," Agriculture, MDPI, vol. 8(6), pages 1-21, May.
    3. M. Safdar Munir & Imran Sarwar Bajwa & Amna Ashraf & Waheed Anwar & Rubina Rashid & Abd E.I.-Baset Hassanien, 2021. "Intelligent and Smart Irrigation System Using Edge Computing and IoT," Complexity, Hindawi, vol. 2021, pages 1-16, February.
    4. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Guoqing & You, Fengqi, 2022. "Renewable energy-powered semi-closed greenhouse for sustainable crop production using model predictive control and machine learning for energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Srinivasagan N. Subhashree & C. Igathinathane & Adnan Akyuz & Md. Borhan & John Hendrickson & David Archer & Mark Liebig & David Toledo & Kevin Sedivec & Scott Kronberg & Jonathan Halvorson, 2023. "Tools for Predicting Forage Growth in Rangelands and Economic Analyses—A Systematic Review," Agriculture, MDPI, vol. 13(2), pages 1-30, February.
    3. Vassilis Aschonitis & Christos G. Karydas & Miltos Iatrou & Spiros Mourelatos & Irini Metaxa & Panagiotis Tziachris & George Iatrou, 2019. "An Integrated Approach to Assessing the Soil Quality and Nutritional Status of Large and Long-Term Cultivated Rice Agro-Ecosystems," Agriculture, MDPI, vol. 9(4), pages 1-25, April.
    4. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    5. Diego Alejandro Salinas-Velandia & Felipe Romero-Perdomo & Stephanie Numa-Vergel & Edwin Villagrán & Pilar Donado-Godoy & Julio Ricardo Galindo-Pacheco, 2022. "Insights into Circular Horticulture: Knowledge Diffusion, Resource Circulation, One Health Approach, and Greenhouse Technologies," IJERPH, MDPI, vol. 19(19), pages 1-16, September.
    6. da Silveira, Franco & da Silva, Sabrina Letícia Couto & Machado, Filipe Molinar & Barbedo, Jayme Garcia Arnal & Amaral, Fernando Gonçalves, 2023. "Farmers' perception of the barriers that hinder the implementation of agriculture 4.0," Agricultural Systems, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:360-:d:1054266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.