IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i1p156-d1028663.html
   My bibliography  Save this article

Oil Palm Fresh Fruit Bunch Ripeness Detection Methods: A Systematic Review

Author

Listed:
  • Jin Wern Lai

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Hafiz Rashidi Ramli

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Luthffi Idzhar Ismail

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Wan Zuha Wan Hasan

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

Abstract

The increasing severity of the labour shortage problem in the Malaysian palm oil industry has created a need to explore other avenues for harvesting oil palm fresh fruit bunches (FFBs) such as through autonomous robots’ deployment. However, the first step in using an autonomous system to harvest FFBs is to identify which FFBs have become ripe and are ready to be harvested. In this work, we reviewed previous and current methods of identifying the maturity of fresh fruit bunches as found in the literature. The different methods were then compared in terms of the types of sample data used, sensor modalities, and types of classifiers used with a particular focus on the feasibility of each method for on-field application. From the 51 papers reviewed, which include a total of 11 unique approaches, it was found that the most feasible method for detecting ripe FFBs in the field is a combination of computer vision and deep learning. This system has the advantages of being a noncontact approach that is low cost while also being able to operate in real time with high accuracy.

Suggested Citation

  • Jin Wern Lai & Hafiz Rashidi Ramli & Luthffi Idzhar Ismail & Wan Zuha Wan Hasan, 2023. "Oil Palm Fresh Fruit Bunch Ripeness Detection Methods: A Systematic Review," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:1:p:156-:d:1028663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/1/156/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/1/156/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nuzhat Khan & Mohamad Anuar Kamaruddin & Usman Ullah Sheikh & Yusri Yusup & Muhammad Paend Bakht, 2021. "Oil Palm and Machine Learning: Reviewing One Decade of Ideas, Innovations, Applications, and Gaps," Agriculture, MDPI, vol. 11(9), pages 1-26, August.
    2. Shahrzad Zolfagharnassab & Abdul Rashid Bin Mohamed Shariff & Reza Ehsani & Hawa Ze Jaafar & Ishak Bin Aris, 2022. "Classification of Oil Palm Fresh Fruit Bunches Based on Their Maturity Using Thermal Imaging Technique," Agriculture, MDPI, vol. 12(11), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Nishat Akhtar & Emaad Ansari & Syed Sahal Nazli Alhady & Elmi Abu Bakar, 2023. "Leveraging on Advanced Remote Sensing- and Artificial Intelligence-Based Technologies to Manage Palm Oil Plantation for Current Global Scenario: A Review," Agriculture, MDPI, vol. 13(2), pages 1-26, February.
    2. Najihah Ahmad Latif & Fatini Nadhirah Mohd Nain & Nurul Hashimah Ahamed Hassain Malim & Rosni Abdullah & Muhammad Farid Abdul Rahim & Mohd Nasruddin Mohamad & Nurul Syafika Mohamad Fauzi, 2021. "Predicting Heritability of Oil Palm Breeding Using Phenotypic Traits and Machine Learning," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    3. Diana Martínez-Arteaga & Nolver Atanacio Arias Arias & Aquiles E. Darghan & Dursun Barrios, 2023. "Identification of Influential Factors in the Adoption of Irrigation Technologies through Neural Network Analysis: A Case Study with Oil Palm Growers," Agriculture, MDPI, vol. 13(4), pages 1-13, April.
    4. Diana Martínez-Arteaga & Nolver Atanasio Arias Arias & Aquiles E. Darghan & Carlos Rivera & Jorge Alonso Beltran, 2023. "Typology of Irrigation Technology Adopters in Oil Palm Production: A Categorical Principal Components and Fuzzy Logic Approach," Sustainability, MDPI, vol. 15(13), pages 1-11, June.
    5. Jia Quan Goh & Abdul Rashid Mohamed Shariff & Nazmi Mat Nawi, 2021. "Application of Optical Spectrometer to Determine Maturity Level of Oil Palm Fresh Fruit Bunches Based on Analysis of the Front Equatorial, Front Basil, Back Equatorial, Back Basil and Apical Parts of ," Agriculture, MDPI, vol. 11(12), pages 1-20, November.
    6. Razman Pahri Siti-Dina & Ah Choy Er & Wai Yan Cheah, 2023. "Social Issues and Challenges among Oil Palm Smallholder Farmers in Malaysia: Systematic Literature Review," Sustainability, MDPI, vol. 15(4), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:1:p:156-:d:1028663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.