Author
Listed:
- Peng Lyu
(Graduate School of Artificial Intelligence, Jeonju University, Jeonju-si 55069, Republic of Korea
Artificial Intelligence Research Center, Jeonju University, Jeonju-si 55069, Republic of Korea)
- Jeongik Min
(Graduate School of Artificial Intelligence, Jeonju University, Jeonju-si 55069, Republic of Korea
Artificial Intelligence Research Center, Jeonju University, Jeonju-si 55069, Republic of Korea)
- Juwhan Song
(Graduate School of Artificial Intelligence, Jeonju University, Jeonju-si 55069, Republic of Korea
Artificial Intelligence Research Center, Jeonju University, Jeonju-si 55069, Republic of Korea)
Abstract
A non-invasive automatic broiler weight estimation and prediction method based on a machine learning algorithm was developed to address the issue of high labor costs and stress responses caused by the traditional broiler weighing method in large-scale broiler production. Machine learning algorithms are a data-driven strategy that enables computer systems to make predictions and judgments based on patterns and regularities that they have learned. To estimate the current weight of individual live broilers on farms, machine learning algorithms such as the Gaussian mixture model, Isolation Forest, and Ordering Points To Identify the Clustering Structure (OPTICS) are used to filter and extract data features using a two-stage clustering and noise reduction process. Real-time weight prediction was also achieved by combining polynomial fitting and the gray models and adjusting the model parameters based on prediction accuracy feedback. The symmetric mean absolute percentage error (SMAPE) value is a metric that is commonly used to evaluate the predictive performance of a model by comparing the degree of error between the model’s predicted value on the day of slaughter and the true value measured manually, and the results of the experiments on 111 datasets showed that 7.21% were less than or equal to 0.03, 28.83% were less than or equal to 0.1 and greater than 0.03, and 31.53% were less than or equal to 0.2 and greater than 0.1. This method can be used as a prediction scheme for broiler weight monitoring in a large-scale rearing environment, considering the cost of implementation and the accuracy of estimation.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:12:p:2193-:d:1286573. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.