IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i10p1920-d1251636.html
   My bibliography  Save this article

Design and Experimental Investigation of a Transplanting Mechanism for Super Rice Pot Seedlings

Author

Listed:
  • Maile Zhou

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Zhaoxiang Wei

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Zeliang Wang

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Hao Sun

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Guibin Wang

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Jianjun Yin

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

Super rice contains a variety of advantageous characteristics. However, current rice seedling transplanting machines fail to achieve the necessary trajectory and distance required for super rice mechanized transplanting. To address this issue, this study introduces a differential-speed rotary mechanism for transplanting super rice pot seedlings. The developed mechanism operates using a non-uniform speed differential gear train, which enables the transplanting arm components to mimic the specific trajectory and posture necessary for transplanting super rice pot seedlings. The kinematic model of the differential-speed rotary super rice pot seedling transplanting mechanism (PSTM) was established, and optimization design software was developed. This software facilitated the determination of a set of mechanism parameters optimized for super rice pot seedling transplantation. The results obtained from virtual simulations were found to be in alignment with those from the optimization software, thereby verifying the accuracy of the theoretical analysis and simulation. A testing bench for the rice PSTM was also developed and used for pot seedling pickup experiments. The bench tests demonstrated that the designed super rice PSTM yielded a seedling pickup success rate of 97% and a seedling injury rate of 1.8% when operating at an efficiency of 200 times/min.

Suggested Citation

  • Maile Zhou & Zhaoxiang Wei & Zeliang Wang & Hao Sun & Guibin Wang & Jianjun Yin, 2023. "Design and Experimental Investigation of a Transplanting Mechanism for Super Rice Pot Seedlings," Agriculture, MDPI, vol. 13(10), pages 1-21, September.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:1920-:d:1251636
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/10/1920/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/10/1920/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinzhong Wang & Tianyu Hong & Weiquan Fang & Xingye Chen, 2024. "Optimized Design for Vibration Reduction in a Residual Film Recovery Machine Frame Based on Modal Analysis," Agriculture, MDPI, vol. 14(4), pages 1-21, March.
    2. Rencai Yue & Mengjiao Yao & Tengfei Zhang & Jiawei Shi & Jinhao Zhou & Jianping Hu, 2024. "Design and Experiment of Dual-Row Seedling Pick-Up Device for High-Speed Automatic Transplanting Machine," Agriculture, MDPI, vol. 14(6), pages 1-18, June.
    3. Mengjiao Yao & Jianping Hu & Wei Liu & Jiawei Shi & Yongwang Jin & Junpeng Lv & Zitong Sun & Che Wang, 2024. "Precise Servo-Control System of a Dual-Axis Positioning Tray Conveying Device for Automatic Transplanting Machine," Agriculture, MDPI, vol. 14(8), pages 1-19, August.
    4. Guoxin Ma & Qiang Shi & Yuanchao Wu & Yang Liu & Lvhua Han & Jianping Hu & Hanping Mao & Zhiyu Zuo, 2024. "Effects of Biochar on the Growth and Physiological and Mechanical Properties of Cucumber Plug Seedlings Before and After Transplanting," Agriculture, MDPI, vol. 14(11), pages 1-18, November.
    5. Xinxin Chen & Gaoming Xu & Xiaoyu Zhang & Weichao Tan & Qishuo Ding & Ahmad Ali Tagar, 2024. "Performance Evaluation of Biomimetic-Designed Rotary Blades for Straw Incorporation in an Intensive Tillage System," Agriculture, MDPI, vol. 14(8), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:1920-:d:1251636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.