IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i9p1499-d918347.html
   My bibliography  Save this article

Multi-Granularity Feature Aggregation with Self-Attention and Spatial Reasoning for Fine-Grained Crop Disease Classification

Author

Listed:
  • Xin Zuo

    (School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

  • Jiao Chu

    (School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

  • Jifeng Shen

    (School of Electronic and Informatics Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Jun Sun

    (School of Electronic and Informatics Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

Combining disease categories and crop species leads to complex intra-class and inter-class differences. Significant intra-class difference and subtle inter-class difference pose a great challenge to high-precision crop disease classification tasks. To this end, we propose a multi-granularity feature aggregation method for accurately identifying disease types and crop species as well as better understanding the disease-affected regions implicitly. Specifically, in order to capture fine-grained discriminating clues to disease categories, we first explored the pixel-level spatial self-attention to model the pair-wise semantic relations. Second, we utilized the block-level channel self-attention to enhance the feature-discriminative ability of different crop species. Finally, we used a spatial reasoning module to model the spatial geometric relationship of the image patches sequentially, such that the feature-discriminative ability of characterizing both diseases and species is further improved. The proposed model was verified on the PDR2018 dataset, the FGVC8 dataset, and the non-lab dataset PlantDoc. Experimental results demonstrated our method reported respective classification accuracies of 88.32%, 89.95%, and 89.75% along with F1-scores of 88.20%, 89.24%, and 89.13% on three datasets. More importantly, the proposed architecture not only improved the classification accuracy but also promised model efficiency with low complexity, which is beneficial for precision agricultural applications.

Suggested Citation

  • Xin Zuo & Jiao Chu & Jifeng Shen & Jun Sun, 2022. "Multi-Granularity Feature Aggregation with Self-Attention and Spatial Reasoning for Fine-Grained Crop Disease Classification," Agriculture, MDPI, vol. 12(9), pages 1-22, September.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1499-:d:918347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/9/1499/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/9/1499/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamna Waheed & Noureen Zafar & Waseem Akram & Awais Manzoor & Abdullah Gani & Saif ul Islam, 2022. "Deep Learning Based Disease, Pest Pattern and Nutritional Deficiency Detection System for “Zingiberaceae” Crop," Agriculture, MDPI, vol. 12(6), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamna Waheed & Waseem Akram & Saif ul Islam & Abdul Hadi & Jalil Boudjadar & Noureen Zafar, 2023. "A Mobile-Based System for Detecting Ginger Leaf Disorders Using Deep Learning," Future Internet, MDPI, vol. 15(3), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1499-:d:918347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.