IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i9p1478-d915609.html
   My bibliography  Save this article

Soil Fertility Improvement and Carbon Sequestration through Exogenous Organic Matter and Biostimulant Application

Author

Listed:
  • Bozena Debska

    (Department of Biogeochemistry and Soil Science, Bydgoszcz University of Science and Technology, Bernardynska 6/8 St., 85-029 Bydgoszcz, Poland)

  • Karol Kotwica

    (Department of Agronomy, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland)

  • Magdalena Banach-Szott

    (Department of Biogeochemistry and Soil Science, Bydgoszcz University of Science and Technology, Bernardynska 6/8 St., 85-029 Bydgoszcz, Poland)

  • Ewa Spychaj-Fabisiak

    (Department of Biogeochemistry and Soil Science, Bydgoszcz University of Science and Technology, Bernardynska 6/8 St., 85-029 Bydgoszcz, Poland)

  • Erika Tobiašová

    (Department of Soil Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2 St., 949 76 Nitra, Slovakia)

Abstract

One of the main tasks in the search for environmentally friendly crop-growing methods is to increase soil fertility by improving its physical, chemical and biological parameters. The aim of this study was to determine the effect that the long-term annual application of different types of soil fertility agents (exogenous organic matter: 1. manure, 2. straw in combination with nitrogen fertilization and liming and 3. the addition of biostimulants) had on organic matter properties, including humic acid (HAs) properties. The research was carried out on the basis of soil samples from a ten-year pot experiment which was set up as single-factor pot experiment with four replications. PVC pots with perforated bottoms were filled with soil samples taken from the tilled layer of an arable field where winter wheat was grown in monoculture. The pots were exposed directly to the weather and were left without vegetation. The soil samples were assayed for the content of total organic carbon (TOC), total nitrogen and fractional composition of humus. HAs were extracted with the Schnitzer method and analyzed for the elemental composition, spectrometric parameters in the FT-IR and UV-VIS range and hydrophilic and hydrophobic properties. In addition, EPR spectra were produced. The results showed that the content of organic matter compared to soil without additives increased with the use of manure and the use of straw in the CaO variant and in the form of a mulch. The content of dissolved organic carbon (DOC) ranged from 124.6 to 286.1 mg kg −1 and had strong positive correlation with TOC content. The values of the ratio of carbon content in humic acids to carbon content in fulvic acids (CHAs/CFAs) ranged from 0.71 to 0.99. The use of a biostimulator—with or without the addition of straw—increased carbon sequestration in humic acid molecules, as well as their oxidation level and their share of hydrophobic fractions with the longest retention time. Thus, the addition of UGmax intensifies humification processes, leading to the formation of stable humic acid molecules.

Suggested Citation

  • Bozena Debska & Karol Kotwica & Magdalena Banach-Szott & Ewa Spychaj-Fabisiak & Erika Tobiašová, 2022. "Soil Fertility Improvement and Carbon Sequestration through Exogenous Organic Matter and Biostimulant Application," Agriculture, MDPI, vol. 12(9), pages 1-18, September.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1478-:d:915609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/9/1478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/9/1478/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scherr, Sara J., 1999. "Soil degradation: a threat to developing-country food security by 2020?," 2020 vision discussion papers 27, International Food Policy Research Institute (IFPRI).
    2. Eric C. Brevik, 2013. "The Potential Impact of Climate Change on Soil Properties and Processes and Corresponding Influence on Food Security," Agriculture, MDPI, vol. 3(3), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Lemanowicz & Bożena Dębska & Robert Lamparski & Agata Michalska & Jarosław Pobereżny & Elżbieta Wszelaczyńska & Agata Bartkowiak & Małgorzata Szczepanek & Magdalena Banach-Szott & Tomasz Knapow, 2023. "Influence of Plant Growth Retardants and Nitrogen Doses on the Content of Plant Secondary Metabolites in Wheat, the Presence of Pests, and Soil Quality Parameters," Agriculture, MDPI, vol. 13(6), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoci, Angelo & Galdi, Giulio & Russu, Paolo, 2022. "Environmental degradation and comparative advantage reversal," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    2. Festo Richard Silungwe & Frieder Graef & Sonoko Dorothea Bellingrath-Kimura & Emmanuel A Chilagane & Siza Donald Tumbo & Fredrick Cassian Kahimba & Marcos Alberto Lana, 2019. "Modelling Rainfed Pearl Millet Yield Sensitivity to Abiotic Stresses in Semi-Arid Central Tanzania, Eastern Africa," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    3. Amanda Silva‐Parra & Juan Manuel Trujillo‐González & Eric C. Brevik, 2021. "Greenhouse gas balance and mitigation potential of agricultural systems in Colombia: A systematic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 554-572, June.
    4. Sameh Kotb Abd-Elmabod & Noura Bakr & Miriam Muñoz-Rojas & Paulo Pereira & Zhenhua Zhang & Artemi Cerdà & Antonio Jordán & Hani Mansour & Diego De la Rosa & Laurence Jones, 2019. "Assessment of Soil Suitability for Improvement of Soil Factors and Agricultural Management," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    5. Liudmila Tripolskaja & Asta Kazlauskaite-Jadzevice & Virgilijus Baliuckas & Almantas Razukas, 2021. "Natural and Managed Grasslands Productivity during Multiyear in Ex-Arable Lands (in the Context of Climate Change)," Agriculture, MDPI, vol. 11(3), pages 1-13, March.
    6. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    7. Singha, C., 2018. "Analysing adoption of soil conservation measures by farmers in Darjeeling district, India," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277549, International Association of Agricultural Economists.
    8. Ramasamy, C., 2004. "Constraints to Growth in Indian Agriculture: Needed Technology, Resource Management and Trade Strategies," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 59(1), pages 1-41.
    9. Amadou Diop, 1999. "Sustainable Agriculture: New Paradigms and Old Practices? Increased Production with Management of Organic Inputs in Senegal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 1(3), pages 285-296, September.
    10. Ekbom, Anders, 2009. "Determinants of Soil Capital," Working Papers in Economics 339, University of Gothenburg, Department of Economics.
    11. Headey, Derek D. & Jayne, T.S., 2014. "Adaptation to land constraints: Is Africa different?," Food Policy, Elsevier, vol. 48(C), pages 18-33.
    12. Obare, Gideon A. & Mwakubo, Samuel M. & Ouma, Emily Awuor & Mohammed, Lutta & Omiti, John M., 2004. "Social Capital and Soil Erosion Control in Agriculturally Marginal Areas of Kenya: The Case of Machakos and Taita-Taveta Districts," 2004 Inaugural Symposium, December 6-8, 2004, Nairobi, Kenya 9532, African Association of Agricultural Economists (AAAE).
    13. Teresa R. Freitas & João A. Santos & Ana P. Silva & Helder Fraga, 2023. "Reviewing the Adverse Climate Change Impacts and Adaptation Measures on Almond Trees ( Prunus dulcis )," Agriculture, MDPI, vol. 13(7), pages 1-19, July.
    14. Southgate, Douglas & Coxhead, Ian A., 2009. "Food Insecurity and Its Determinants in Asia and the Pacific," Staff Papers 92221, University of Wisconsin-Madison, Department of Agricultural and Applied Economics.
    15. Nwosu T. V & Nnabuihe E.C & Okafor M.J & Madueke, C.O, 2021. "Assessment Of Some Physical Properties Of Soil Along An Erosion Prone Watershed, Owerri-Imo State Nigeria," Journal Clean WAS (JCleanWAS), Zibeline International Publishing, vol. 5(1), pages 10-16, April.
    16. Hurni, Hans & Osman-Elasha, Balgis & Barnett, Audia & Herbert, Ann & Idel, Anita & Kairo, Moses & Pascual-Gapasin, Dely & Schneider, Juerg & Wiebe, Keith D., 2009. "Context, conceptual framework and sustainability indicators," Book Chapters,, International Water Management Institute.
    17. Oladayo Amed Idris & Prosper Opute & Israel Ropo Orimoloye & Mark Steve Maboeta, 2022. "Climate Change in Africa and Vegetation Response: A Bibliometric and Spatially Based Information Assessment," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    18. Leisinger, Klaus M., 2000. "The 'Political Economy' of Agricultural Biotechnology for the Developing World," 2000 Conference, August 13-18, 2000, Berlin, Germany 197190, International Association of Agricultural Economists.
    19. Noble, Andrew, 2012. "The slumbering giant: land and water degradation," 2012: The Scramble for Natural Resources: More Food, Less Land?, 9-10 October 2012 152413, Crawford Fund.
    20. Pradhan, Aliza & Chan, Catherine & Roul, Pravat Kumar & Halbrendt, Jacqueline & Sipes, Brent, 2018. "Potential of conservation agriculture (CA) for climate change adaptation and food security under rainfed uplands of India: A transdisciplinary approach," Agricultural Systems, Elsevier, vol. 163(C), pages 27-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1478-:d:915609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.