IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i9p1324-d900046.html
   My bibliography  Save this article

Mowing Increases Root-to-Shoot Ratio but Decreases Soil Organic Carbon Storage and Microbial Biomass C in a Semiarid Grassland of North China

Author

Listed:
  • Lu Li

    (Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
    School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014010, China)

  • Huaiqiang Liu

    (Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China)

  • Taogetao Baoyin

    (Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China)

Abstract

Quantifying the long-term effects of mowing on soil organic carbon (SOC) is of great importance for understanding the changes in the carbon cycle of the grassland ecosystem and for managing the grassland strategies for both production and soil nutrients. We investigated SOC content and storage within the 0–30 cm soil layer in the grasslands following the application of different mowing regimes—i.e., mowing once every 2 years (M 1/2 ), mowing twice every 3 years (M 2/3 ), mowing once a year (M 1/1 ), mowing twice a year (M 2/1 ), and no mowing (CK)—in the semiarid steppe of northern China. The results indicated that SOC storage and microbial biomass C (MBC) decreased significantly with soil depth. Different mowing frequencies all declined SOC storage and MBC of the grassland ecosystem; however, the root-to-shoot ratio (R:S) was increased. The SOC storage was greatest under CK and had the following order: CK > M 1/2 > M 2/3 > M 1/1 > M 2/1 at 0–20 cm, while no significant difference existed in the five mowing frequencies at the soil 20–30 cm layers. Our findings elucidate that different mowing regimes influence soil carbon storage by altering the productivity of vegetation, litter, plant community composition, soil microbial biomass, and resource allocation between aboveground plants and belowground roots, which need to be considered in the sustainable utilization of grasslands in the future. The results of this study support the view that mowing once every 2 years may be an effective mowing management regime for semiarid grasslands, as it conserves both above and belowground parts and maintains the healthy development of ecosystem functions in semiarid grasslands.

Suggested Citation

  • Lu Li & Huaiqiang Liu & Taogetao Baoyin, 2022. "Mowing Increases Root-to-Shoot Ratio but Decreases Soil Organic Carbon Storage and Microbial Biomass C in a Semiarid Grassland of North China," Agriculture, MDPI, vol. 12(9), pages 1-15, August.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1324-:d:900046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/9/1324/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/9/1324/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anita Konieczna & Kamil Roman & Kinga Borek & Emilia Grzegorzewska, 2021. "GHG and NH 3 Emissions vs. Energy Efficiency of Maize Production Technology: Evidence from Polish Farms; a Further Study," Energies, MDPI, vol. 14(17), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anita Konieczna & Kamila Mazur & Adam Koniuszy & Andrzej Gawlik & Igor Sikorski, 2022. "Thermal Energy and Exhaust Emissions of a Gasifier Stove Feeding Pine and Hemp Pellets," Energies, MDPI, vol. 15(24), pages 1-17, December.
    2. Emmanouil Tziolas & Stefanos Ispikoudis & Konstantinos Mantzanas & Dimitrios Koutsoulis & Anastasia Pantera, 2022. "Economic and Environmental Assessment of Olive Agroforestry Practices in Northern Greece," Agriculture, MDPI, vol. 12(6), pages 1-15, June.
    3. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.
    4. Xianguo Ren & Haiqing Tian & Kai Zhao & Dapeng Li & Ziqing Xiao & Yang Yu & Fei Liu, 2022. "Research on pH Value Detection Method during Maize Silage Secondary Fermentation Based on Computer Vision," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    5. Dai Geng & Di Wang & Yushuang Li & Wei Zhou & Hanbing Qi, 2023. "Detection Stability Improvement of Near-Infrared Laser Telemetry for Methane Emission from Oil/Gas Station Using a Catadioptric Optical Receiver," Energies, MDPI, vol. 16(9), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1324-:d:900046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.