IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i8p1253-d891731.html
   My bibliography  Save this article

Optimizing Deficit Irrigation Management to Improve Water Productivity of Greenhouse Tomato under Plastic Film Mulching Using the RZ-SHAW Model

Author

Listed:
  • Haomiao Cheng

    (School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
    School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Shu Ji

    (School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Hengjun Ge

    (Yangzhou Survey Design Research Institute Co., Ltd., Yangzhou 225007, China)

  • Mohmed A. M. Abdalhi

    (Department of Agricultural Engineering, Faculty of Agricultural Technology and Fish Sciences, Al-Neelain University, Khartoum 12702, Sudan)

  • Tengyi Zhu

    (School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Xiaoping Chen

    (School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Wei Ding

    (Yangzhou Survey Design Research Institute Co., Ltd., Yangzhou 225007, China)

  • Shaoyuan Feng

    (School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225127, China)

Abstract

Deficit irrigation (DI) is a widely recognized water-saving irrigation method, but it is difficult to precisely quantify optimum DI levels in tomato production. In this study, the Root Zone Water Quality-Simultaneous Heat and Water (RZ-SHAW) model was used to evaluate the potential effects of different DI levels on tomato growth in a drip-irrigated field. Combinations of five DI scenarios were tested in greenhouse field experiments under plastic film mulching according to the percentage of crop evapotranspiration (ET), i.e., ET50, ET75, ET100, ET125, and ET150. The model was calibrated by using the ET100 scenario, and validated with four other scenarios. The simulation results showed that the predictions of tomato growth parameters and soil water were in good agreement with the observed data. The relative root mean square error (RRMSE), the percent bias (PBIAS), index of agreement (IoA) and coefficient of determination (R 2 ) for leaf area index (LAI), plant height and soil volumetric water content (VWC) along the soil layers were <23.5%, within ±16.7%, >0.72 and >0.56, respectively. The relative errors (REs) of simulated biomass and yield were 3.5–8.7% and 7.0–14.0%, respectively. There was a positive correlation between plant water stress factor (PWSF) and DI levels ( p < 0.01). The calibrated model was subsequently run with 45 different DI scenarios from ET0 to ET225 to explore optimal DI management for maximizing water productivity (WP) and yield. It was found that the maximum WP and yield occurred in ET95 and ET200, with values of 28.3 kg/(ha·mm) and 7304 kg/ha, respectively. The RZ-SHAW demonstrated its capacity to evaluate the effects of DI management on tomato growth under plastic film mulching. The parameterized model can be used to optimize DI management for improving WP and yield based on the water stress-based method.

Suggested Citation

  • Haomiao Cheng & Shu Ji & Hengjun Ge & Mohmed A. M. Abdalhi & Tengyi Zhu & Xiaoping Chen & Wei Ding & Shaoyuan Feng, 2022. "Optimizing Deficit Irrigation Management to Improve Water Productivity of Greenhouse Tomato under Plastic Film Mulching Using the RZ-SHAW Model," Agriculture, MDPI, vol. 12(8), pages 1-13, August.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1253-:d:891731
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/8/1253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/8/1253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anapalli, Saseendran S. & Ahuja, Lajpat R. & Gowda, Prasanna H. & Ma, Liwang & Marek, Gary & Evett, Steven R. & Howell, Terry A., 2016. "Simulation of crop evapotranspiration and crop coefficients with data in weighing lysimeters," Agricultural Water Management, Elsevier, vol. 177(C), pages 274-283.
    2. Kisekka, I. & Schlegel, A. & Ma, L. & Gowda, P.H. & Prasad, P.V.V., 2017. "Optimizing preplant irrigation for maize under limited water in the High Plains," Agricultural Water Management, Elsevier, vol. 187(C), pages 154-163.
    3. Haomiao Cheng & Qilin Yu & Mohmed A. M. Abdalhi & Fan Li & Zhiming Qi & Tengyi Zhu & Wei Cai & Xiaoping Chen & Shaoyuan Feng, 2022. "RZWQM2 Simulated Drip Fertigation Management to Improve Water and Nitrogen Use Efficiency of Maize in a Solar Greenhouse," Agriculture, MDPI, vol. 12(5), pages 1-14, May.
    4. Chen, Ning & Li, Xianyue & Shi, Haibin & Hu, Qi & Zhang, Yuehong & Hou, Chenli & Liu, Yahui, 2022. "Modeling evapotranspiration and evaporation in corn/tomato intercropping ecosystem using a modified ERIN model considering plastic film mulching," Agricultural Water Management, Elsevier, vol. 260(C).
    5. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    6. Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & Génard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Wu, You & Yan, Shicheng & Fan, Junliang & Zhang, Fucang & Zhao, Wenju & Zheng, Jing & Guo, Jinjin & Xiang, Youzhen & Wu, Lifeng, 2022. "Combined effects of irrigation level and fertilization practice on yield, economic benefit and water-nitrogen use efficiency of drip-irrigated greenhouse tomato," Agricultural Water Management, Elsevier, vol. 262(C).
    8. Fang, Q. & Ma, L. & Yu, Q. & Ahuja, L.R. & Malone, R.W. & Hoogenboom, G., 2010. "Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1165-1174, August.
    9. Wang, Dong & Zhang, Huihui & Gartung, Jim, 2020. "Long-term productivity of early season peach trees under different irrigation methods and postharvest deficit irrigation," Agricultural Water Management, Elsevier, vol. 230(C).
    10. Saseendran, S.A. & Trout, T.J. & Ahuja, L.R. & Ma, L. & McMaster, G.S. & Nielsen, D.C. & Andales, A.A. & Chávez, J.L. & Ham, J., 2015. "Quantifying crop water stress factors from soil water measurements in a limited irrigation experiment," Agricultural Systems, Elsevier, vol. 137(C), pages 191-205.
    11. Jensen, Christian R. & Battilani, Adriano & Plauborg, Finn & Psarras, Georgios & Chartzoulakis, Kostas & Janowiak, Franciszek & Stikic, Radmila & Jovanovic, Zorica & Li, Guitong & Qi, Xuebin & Liu, Fu, 2010. "Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes," Agricultural Water Management, Elsevier, vol. 98(3), pages 403-413, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Zhao, Long & Fan, Junliang & Wang, Zhihui, 2024. "Optimizing deficit drip irrigation to improve yield,quality, and water productivity of apple in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 296(C).
    2. Kuang, Naikun & Ma, Yuzhao & Hong, Shengzhe & Jiao, Fengli & Liu, Changyuan & Li, Quanqi & Han, Huifang, 2021. "Simulation of soil moisture dynamics, evapotranspiration, and water drainage of summer maize in response to different depths of subsoiling with RZWQM2," Agricultural Water Management, Elsevier, vol. 249(C).
    3. Shahadha, Saadi Sattar & Wendroth, Ole & Zhu, Junfeng & Walton, Jason, 2019. "Can measured soil hydraulic properties simulate field water dynamics and crop production?," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Anapalli, Saseendran S. & Fisher, Daniel K. & Reddy, Krishna N. & Rajan, Nithya & Pinnamaneni, Srinivasa Rao, 2019. "Modeling evapotranspiration for irrigation water management in a humid climate," Agricultural Water Management, Elsevier, vol. 225(C).
    5. Tianyi Yang & Haichao Yu & Sien Li & Xiangning Yuan & Xiang Ao & Haochong Chen & Yuexin Wang & Jie Ding, 2024. "Driving Factors and Numerical Simulation of Evapotranspiration of a Typical Cabbage Agroecosystem in the Shiyang River Basin, Northwest China," Agriculture, MDPI, vol. 14(6), pages 1-14, June.
    6. Yang, Xin & Bornø, Marie Louise & Wei, Zhenhua & Liu, Fulai, 2021. "Combined effect of partial root drying and elevated atmospheric CO2 on the physiology and fruit quality of two genotypes of tomato plants with contrasting endogenous ABA levels," Agricultural Water Management, Elsevier, vol. 254(C).
    7. Haomiao Cheng & Qilin Yu & Mohmed A. M. Abdalhi & Fan Li & Zhiming Qi & Tengyi Zhu & Wei Cai & Xiaoping Chen & Shaoyuan Feng, 2022. "RZWQM2 Simulated Drip Fertigation Management to Improve Water and Nitrogen Use Efficiency of Maize in a Solar Greenhouse," Agriculture, MDPI, vol. 12(5), pages 1-14, May.
    8. Tang, Jiankai & Yang, Qiliang & Liang, Jiaping & Wang, Haidong & Yue, Xiulu, 2024. "Water management, planting slope indicators, and economic benefit analysis for Panax notoginseng production decision under shaded and rain-shelter cultivation: A three-year sloping fields experiment," Agricultural Water Management, Elsevier, vol. 291(C).
    9. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    10. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    11. Lu, Jie & Bai, Zhaohai & Velthof, Gerard L. & Wu, Zhiguo & Chadwick, David & Ma, Lin, 2019. "Accumulation and leaching of nitrate in soils in wheat-maize production in China," Agricultural Water Management, Elsevier, vol. 212(C), pages 407-415.
    12. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    13. Agüero Alcaras, L. Martín & Rousseaux, M. Cecilia & Searles, Peter S., 2021. "Yield and water productivity responses of olive trees (cv. Manzanilla) to post-harvest deficit irrigation in a non-Mediterranean climate," Agricultural Water Management, Elsevier, vol. 245(C).
    14. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    15. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    16. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    17. Libardi, Luís Guilherme Polizel & de Faria, Rogério Teixeira & Dalri, Alexandre Barcellos & de Souza Rolim, Glauco & Palaretti, Luiz Fabiano & Coelho, Anderson Prates & Martins, Izabela Paiva, 2019. "Evapotranspiration and crop coefficient (Kc) of pre-sprouted sugarcane plantlets for greenhouse irrigation management," Agricultural Water Management, Elsevier, vol. 212(C), pages 306-316.
    18. Ørum, Jens Erik & Boesen, Mads Vejlby & Jovanovic, Zorica & Pedersen, Søren Marcus, 2010. "Farmers' incentives to save water with new irrigation systems and water taxation--A case study of Serbian potato production," Agricultural Water Management, Elsevier, vol. 98(3), pages 465-471, December.
    19. Michaela ŠKEŘÍKOVÁ & Václav BRANT & Milan KROULÍK & Jan PIVEC & Petr ZÁBRANSKÝ & Josef HAKL & Michael HOFBAUER, 2018. "Water demands and biomass production of sorghum and maize plants in areas with insufficient precipitation in Central Europe," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(8), pages 367-378.
    20. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1253-:d:891731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.