Author
Listed:
- Shuang Cheng
(Jiangsu Key Laboratory of Crop Cultivation and Physiology, Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China)
- Zhipeng Xing
(Jiangsu Key Laboratory of Crop Cultivation and Physiology, Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China)
- Chao Tian
(Jiangsu Key Laboratory of Crop Cultivation and Physiology, Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China)
- Shaoping Li
(Jiangsu Key Laboratory of Crop Cultivation and Physiology, Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China)
- Jinyu Tian
(Jiangsu Key Laboratory of Crop Cultivation and Physiology, Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China)
- Qiuyuan Liu
(Jiangsu Key Laboratory of Crop Cultivation and Physiology, Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China)
- Yajie Hu
(Jiangsu Key Laboratory of Crop Cultivation and Physiology, Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China)
- Baowei Guo
(Jiangsu Key Laboratory of Crop Cultivation and Physiology, Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China)
- Qun Hu
(Jiangsu Key Laboratory of Crop Cultivation and Physiology, Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China)
- Haiyan Wei
(Jiangsu Key Laboratory of Crop Cultivation and Physiology, Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China)
- Hui Gao
(Jiangsu Key Laboratory of Crop Cultivation and Physiology, Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China)
- Hongcheng Zhang
(Jiangsu Key Laboratory of Crop Cultivation and Physiology, Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China)
Abstract
A one-off application of bulk blend urea (BBU), which includes a controlled release urea formula and conventional urea, has been recommended to simplify fertilisation management for direct-seeded rice. However, the effects of different basal application ratios of controlled-release urea formula and conventional urea on yield and nitrogen (N) use efficiency remain unknown in direct-seeded rice. This study set up three BBU treatments in which the controlled-release urea formula provided 50% (BBU1), 60% (BBU2), and 70% (BBU3) of the total N. This study measured their effects on grain yield and N use efficiency of direct-seeded rice. Split fertilisation with conventional urea was used as the control (CK). The study concluded four key points: (i) the grain yield of direct-seeded rice decreased as the proportion of controlled-release urea formula increased, (ii) BBU1 increased grain yields by 8.1–8.6% and 10.2–10.6% compared to BBU2 and BBU3, respectively, as well as a greater number of panicles and spikelets per m 2 , and post-anthesis dry matter accumulation, (iii) the N recovery efficiency and N agronomic efficiency of BBU1 were significantly higher than those of BBU2 and BBU3 treatments, and the nitrogen accumulation was also found to be more, and (iv) compared with the CK, BBU1 achieved considerable grain yield and nitrogen use efficiency while reducing the amount of fertilisation. In conclusion, the appropriate reduction of the basal application ratio of the controlled-release urea formula for direct-seeded rice increased grain yield and nitrogen use efficiency.
Suggested Citation
Shuang Cheng & Zhipeng Xing & Chao Tian & Shaoping Li & Jinyu Tian & Qiuyuan Liu & Yajie Hu & Baowei Guo & Qun Hu & Haiyan Wei & Hui Gao & Hongcheng Zhang, 2022.
"Effects of Controlled Release Urea Formula and Conventional Urea Ratio on Grain Yield and Nitrogen Use Efficiency of Direct-Seeded Rice,"
Agriculture, MDPI, vol. 12(8), pages 1-13, August.
Handle:
RePEc:gam:jagris:v:12:y:2022:i:8:p:1230-:d:888942
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1230-:d:888942. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.