IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i8p1085-d869839.html
   My bibliography  Save this article

Tea Category Identification Using Wavelet Signal Reconstruction of Hyperspectral Imagery and Machine Learning

Author

Listed:
  • Qiang Cui

    (School of Information and Computer, Anhui Agricultural University, Hefei 230036, China)

  • Baohua Yang

    (School of Information and Computer, Anhui Agricultural University, Hefei 230036, China)

  • Biyun Liu

    (School of Information and Computer, Anhui Agricultural University, Hefei 230036, China)

  • Yunlong Li

    (School of Information and Computer, Anhui Agricultural University, Hefei 230036, China)

  • Jingming Ning

    (State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China)

Abstract

Accurately distinguishing the types of tea is of great significance to the pricing, production, and processing of tea. The similarity of the internal spectral characteristics and appearance characteristics of different types of tea greatly limits further research on tea identification. However, wavelet transform can simultaneously extract time domain and frequency domain features, which is a powerful tool in the field of image signal processing. To address this gap, a method for tea recognition based on a lightweight convolutional neural network and support vector machine (L-CNN-SVM) was proposed, aiming to realize tea recognition using wavelet feature figures generated by wavelet time-frequency signal decomposition and reconstruction. Firstly, the redundant discrete wavelet transform was used to decompose the wavelet components of the hyperspectral images of the three teas (black tea, green tea, and yellow tea), which were used to construct the datasets. Secondly, improve the lightweight CNN model to generate a tea recognition model. Finally, compare and evaluate the recognition results of different models. The results demonstrated that the results of tea recognition based on the L-CNN-SVM method outperformed MobileNet v2+RF, MobileNet v2+KNN, MobileNet v2+AdaBoost, AlexNet, and MobileNet v2. For the recognition results of the three teas using reconstruction of wavelet components LL + HL + LH, the overall accuracy rate reached 98.7%, which was 4.7%, 3.4%, 1.4%, and 2.0% higher than that of LH + HL + HH, LL + HH + HH, LL + LL + HH, and LL + LL + LL. This research can provide new inspiration and technical support for grade and quality assessment of cross-category tea.

Suggested Citation

  • Qiang Cui & Baohua Yang & Biyun Liu & Yunlong Li & Jingming Ning, 2022. "Tea Category Identification Using Wavelet Signal Reconstruction of Hyperspectral Imagery and Machine Learning," Agriculture, MDPI, vol. 12(8), pages 1-16, July.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1085-:d:869839
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/8/1085/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/8/1085/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lichao Liu & Quanpeng Bi & Jing Liang & Zhaodong Li & Weiwei Wang & Quan Zheng, 2022. "Farmland Soil Block Identification and Distribution Statistics Based on Deep Learning," Agriculture, MDPI, vol. 12(12), pages 1-17, November.
    2. Gniewko NiedbaƂa & Sebastian Kujawa, 2023. "Digital Innovations in Agriculture," Agriculture, MDPI, vol. 13(9), pages 1-10, August.
    3. Jianghua Ye & Qi Zhang & Miao Jia & Yuhua Wang & Ying Zhang & Xiaoli Jia & Xinyu Zheng & Haibin Wang, 2024. "The Effects of Rock Zones and Tea Tree Varieties on the Growth and Quality of Wuyi Rock Tea Based on the OPLS-DA Model and Machine Learning," Agriculture, MDPI, vol. 14(4), pages 1-14, April.
    4. Na Luo & Yunlong Li & Baohua Yang & Biyun Liu & Qianying Dai, 2022. "Prediction Model for Tea Polyphenol Content with Deep Features Extracted Using 1D and 2D Convolutional Neural Network," Agriculture, MDPI, vol. 12(9), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1085-:d:869839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.