IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i8p1084-d869632.html
   My bibliography  Save this article

Instance-Aware Plant Disease Detection by Utilizing Saliency Map and Self-Supervised Pre-Training

Author

Listed:
  • Taejoo Kim

    (Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea)

  • Hyeongjun Kim

    (Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea)

  • Kyeonghoon Baik

    (N.Thing Corporation, Seoul 06020, Korea)

  • Yukyung Choi

    (Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea)

Abstract

Plant disease detection is essential for optimizing agricultural productivity and crop quality. With the recent advent of deep learning and large-scale plant disease datasets, many studies have shown high performance of supervised learning-based plant disease detectors. However, these studies still have limitations due to two aspects. First, labeling cost and class imbalance problems remain challenging in supervised learning-based methods. Second, plant disease datasets are either unstructured or weakly-unstructured and the shapes of leaves and diseased areas on them are variable, rendering plant disease detection even more challenging. To overcome these limitations, we propose an instance-aware unsupervised plant disease detector, which leverages normalizing flows, a visual saliency map and positional encodings. A novel way to explicitly combine these methods is the proposed model, in which the focus is on reducing background noise. In addition, to better fit the model to the plant disease detection domain and to enhance feature representation, a feature extractor is pre-trained in a self-supervised learning manner using only unlabeled data. In our extensive experiments, it is shown that the proposed approach achieves state-of-the-art performance on widely-used datasets, such as BRACOL (Weakly-unstructured) and PlantVillage (Unstructured), regardless of whether the dataset is weakly-structured or unstructured.

Suggested Citation

  • Taejoo Kim & Hyeongjun Kim & Kyeonghoon Baik & Yukyung Choi, 2022. "Instance-Aware Plant Disease Detection by Utilizing Saliency Map and Self-Supervised Pre-Training," Agriculture, MDPI, vol. 12(8), pages 1-16, July.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1084-:d:869632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/8/1084/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/8/1084/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anil Bhujel & Na-Eun Kim & Elanchezhian Arulmozhi & Jayanta Kumar Basak & Hyeon-Tae Kim, 2022. "A Lightweight Attention-Based Convolutional Neural Networks for Tomato Leaf Disease Classification," Agriculture, MDPI, vol. 12(2), pages 1-18, February.
    2. Yujin Hwang & Seunghyeon Lee & Taejoo Kim & Kyeonghoon Baik & Yukyung Choi, 2022. "Crop Growth Monitoring System in Vertical Farms Based on Region-of-Interest Prediction," Agriculture, MDPI, vol. 12(5), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanlei Xu & Shuolin Kong & Zongmei Gao & Qingyuan Chen & Yubin Jiao & Chenxiao Li, 2022. "HLNet Model and Application in Crop Leaf Diseases Identification," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    2. Xianguo Ren & Haiqing Tian & Kai Zhao & Dapeng Li & Ziqing Xiao & Yang Yu & Fei Liu, 2022. "Research on pH Value Detection Method during Maize Silage Secondary Fermentation Based on Computer Vision," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    3. J. Dhakshayani & B. Surendiran, 2023. "M2F-Net: A Deep Learning-Based Multimodal Classification with High-Throughput Phenotyping for Identification of Overabundance of Fertilizers," Agriculture, MDPI, vol. 13(6), pages 1-19, June.
    4. Zahid Ullah & Najah Alsubaie & Mona Jamjoom & Samah H. Alajmani & Farrukh Saleem, 2023. "EffiMob-Net: A Deep Learning-Based Hybrid Model for Detection and Identification of Tomato Diseases Using Leaf Images," Agriculture, MDPI, vol. 13(3), pages 1-13, March.
    5. Xiang Zhang & Huiyi Gao & Li Wan, 2022. "Classification of Fine-Grained Crop Disease by Dilated Convolution and Improved Channel Attention Module," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    6. Zhihua Hua & Haiyang Yu & Peng Jing & Caoyuan Song & Saifei Xie, 2023. "A Light-Weight Neural Network Using Multiscale Hybrid Attention for Building Change Detection," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    7. Dasen Li & Zhendong Yin & Yanlong Zhao & Wudi Zhao & Jiqing Li, 2023. "MLFAnet: A Tomato Disease Classification Method Focusing on OOD Generalization," Agriculture, MDPI, vol. 13(6), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:8:p:1084-:d:869632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.