IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i5p597-d800960.html
   My bibliography  Save this article

Green-Synthesized Zinc Oxide Nanoparticles Mitigate Salt Stress in Sorghum bicolor

Author

Listed:
  • Tessia Rakgotho

    (Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
    SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa)

  • Nzumbululo Ndou

    (Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
    SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa)

  • Takalani Mulaudzi

    (Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa)

  • Emmanuel Iwuoha

    (SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa)

  • Noluthando Mayedwa

    (SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa)

  • Rachel Fanelwa Ajayi

    (SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa)

Abstract

Salinity is an abiotic stress that is responsible for more than 50% of crop losses worldwide. Current strategies to overcome salinity in agriculture are limited to the use of genetically modified crops and chemicals including fertilizers, pesticides and herbicides; however these are costly and can be hazardous to human health and the environment. Green synthesis of nanoparticles (NPs) is an eco-friendly and cost-effective method, and they might serve as novel biostimulants. This study investigated for the first time the efficiency of ZnO NPs, synthesized from Agathosma betulina to mitigate salt stress in Sorghum bicolor . Hexagonal wurtzite ZnO NPs of about 27.5 nm, were obtained. Sorghum seeds were primed with ZnO NPs (5 and 10 mg/L), prior to planting on potting soil and treatment with high salt (400 mM NaCl). Salt significantly impaired growth by decreasing shoot lengths and fresh weights, causing severe deformation on the anatomical (epidermis and vascular bundle tissue) structure. Element distribution was also affected by salt which increased the Na + /K + ratio (2.9). Salt also increased oxidative stress markers (reactive oxygen species, malondialdehyde), enzyme activities (SOD, CAT and APX), proline, and soluble sugars. Priming with ZnO NPs stimulated the growth of salt-stressed sorghum plants, which was exhibited by improved shoot lengths, fresh weights, and a well-arranged anatomical structure, as well as a low Na + /K + ratio (1.53 and 0.58) indicating an improved element distribution. FTIR spectra confirmed a reduction in the degradation of biomolecules correlated with reduced oxidative stress. This study strongly suggests the use of green-synthesized ZnO NPs from A. betulina as potential biostimulants to improve plant growth under abiotic stress.

Suggested Citation

  • Tessia Rakgotho & Nzumbululo Ndou & Takalani Mulaudzi & Emmanuel Iwuoha & Noluthando Mayedwa & Rachel Fanelwa Ajayi, 2022. "Green-Synthesized Zinc Oxide Nanoparticles Mitigate Salt Stress in Sorghum bicolor," Agriculture, MDPI, vol. 12(5), pages 1-16, April.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:597-:d:800960
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/5/597/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/5/597/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rosenow, D. T. & Quisenberry, J. E. & Wendt, C. W. & Clark, L. E., 1983. "Drought tolerant sorghum and cotton germplasm," Agricultural Water Management, Elsevier, vol. 7(1-3), pages 207-222, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniele Del Buono & Luca Regni & Primo Proietti, 2023. "Abiotic Stresses, Biostimulants and Plant Activity," Agriculture, MDPI, vol. 13(1), pages 1-5, January.
    2. María del Pino Palacios-Diaz & Juan Ramón Fernández-Vera & Jose Manuel Hernández-Moreno & Regla Amorós & Vanessa Mendoza-Grimón, 2023. "Effect of Irrigation Management and Water Quality on Soil and Sorghum bicolor Payenne Yield in Cape Verde," Agriculture, MDPI, vol. 13(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Perlack, Robert & Eaton, Lawrence & Thurhollow, Anthony & Langholtz, Matt & De La Torre Ugarte, Daniel, 2011. "US billion-ton update: biomass supply for a bioenergy and bioproducts industry," MPRA Paper 89324, University Library of Munich, Germany, revised 2011.
    2. Michaela ŠKEŘÍKOVÁ & Václav BRANT & Milan KROULÍK & Jan PIVEC & Petr ZÁBRANSKÝ & Josef HAKL & Michael HOFBAUER, 2018. "Water demands and biomass production of sorghum and maize plants in areas with insufficient precipitation in Central Europe," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(8), pages 367-378.
    3. Bennett, J., 2003. "Opportunities for increasing water productivity of CGIAR crops through plant breeding and molecular biology," IWMI Books, Reports H032638, International Water Management Institute.
    4. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2015. "Spatio-temporal performance of large-scale Gezira Irrigation Scheme, Sudan," Agricultural Systems, Elsevier, vol. 133(C), pages 131-142.
    5. Andrew Young & James Mahan & William Dodge & Paxton Payton, 2020. "BLOB-Based AOMs: A Method for the Extraction of Crop Data from Aerial Images of Cotton," Agriculture, MDPI, vol. 10(1), pages 1-14, January.
    6. Nasrein Mohamed Kamal & Yasir Serag Alnor Gorafi & Hanan Abdeltwab & Ishtiag Abdalla & Hisashi Tsujimoto & Abdelbagi Mukhtar Ali Ghanim, 2021. "A New Breeding Strategy towards Introgression and Characterization of Stay-Green QTL for Drought Tolerance in Sorghum," Agriculture, MDPI, vol. 11(7), pages 1-19, June.
    7. Maggio, Giuseppe & Sitko, Nicholas, 2019. "Knowing is half the battle: Seasonal forecasts, adaptive cropping systems, and the mediating role of private markets in Zambia," Food Policy, Elsevier, vol. 89(C).
    8. Richards, Richard A., 2006. "Physiological traits used in the breeding of new cultivars for water-scarce environments," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 197-211, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:597-:d:800960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.