Author
Listed:
- Yueming Xu
(Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
School of Horticulture and Landscape, Yangzhou Polytechnic College, Yangzhou 225009, China)
- Xiaoyu Zhang
(Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China)
- Huan Yang
(Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China)
- Dalei Lu
(Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China)
Abstract
Exogenous brassinolide (BR) application is a feasible measure to alleviate abiotic stresses on crop productivity. The effects of BR application at the silking-stage on the accumulation, translocation, and remobilization of dry matter (DM) and nutrients (nitrogen, phosphorus, and potassium) of waxy maize exposed to post-silking high temperature (HT) were studied using Jingkenuo2000 (JKN2000, heat-tolerant) and Yunuo7 (YN7, heat-sensitive) as materials. BR application mitigated the penalty of HT on grain yield. HT reduced the post-silking accumulation and increased the translocation of pre-silking DM and nutrients in YN7. In JKN2000, accumulation and remobilization of DM were unaffected by HT. The contribution rate of DM and nutrients translocation to grain yield were unaffected by HT in JKN2000 and increased in YN7. Under HT, the accumulation, translocation, and remobilization of DM were unaffected by BR application, whereas the nitrogen, phosphorus, and potassium response were dependent on hybrids. The harvest index of DM and nutrients in response to HT and BR were different between the two hybrids. In conclusion, BR application relieved the negative effects of HT mainly caused by the increased post-silking accumulation and remobilization of DM and nitrogen, and the alleviation was more obvious in the heat-tolerant hybrid.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:572-:d:797147. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.