IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i3p416-d771988.html
   My bibliography  Save this article

Selection and Fitting of Mixed Models in Sugarcane Yield Trials

Author

Listed:
  • Josafhat Salinas-Ruíz

    (Colegio de Postgraduados, Campus Córdoba, Carretera Córdoba-Veracruz Km. 348, Manuel León, Amatlán de los Reyes 94953, Veracruz, Mexico)

  • Sandra Luz Hernández-Valladolid

    (Agricultura Sustentable y Protegida, Universidad Tecnológica del Centro de Veracruz, Avenida Universidad 350, Cuitláhuac 94910, Veracruz, Mexico)

  • Juan Valente Hidalgo-Contreras

    (Colegio de Postgraduados, Campus Córdoba, Carretera Córdoba-Veracruz Km. 348, Manuel León, Amatlán de los Reyes 94953, Veracruz, Mexico)

  • Juan Manuel Romero-Padilla

    (Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco 56230, Estado de México, Mexico)

Abstract

Mixed models are a useful tool for the analysis of sugarcane field trials in which sugarcane varieties are allocated in different locations and phenotypic traits are evaluated in the same experimental unit (plot) over time. One challenge to analyze these data is how to build a good mixed model when no experimental design is planned, because all sugarcane varieties in the area of influence of a sugar mill are planted in different years due to the age of the crop and there is no spatial information on all plots. The aim of this research was to examine and to determine the most appropriate mixed model for estimating cane stalk yield of sugarcane varieties when previously there was no planned experimental design. Cane stalk yields of 26 sugarcane genotypes harvested in 24 different locations and in different crop cycles (age) were analyzed. The randomized block nested design (plot within block) with ratoon crop as a class variable in the mixed model was the best for the mean comparisons in sugarcane genotype trials (Model 3), allowing a gain in information. The randomized block design approach helps to fit more general random effects, and the covariance structures helps to improve the performance of mixed model repeated measures. This study emphasizes the need to improve the process of finding a good enough mixed model, that is, how to define the mean structure and the best covariance structure for model sugarcane trials that enables more powerful and efficient parameter estimations. The results showed how a more appropriate mixed model might help avoid errors of judgment in sugarcane genotype recommendations for enhancing the productivity of the cane industry.

Suggested Citation

  • Josafhat Salinas-Ruíz & Sandra Luz Hernández-Valladolid & Juan Valente Hidalgo-Contreras & Juan Manuel Romero-Padilla, 2022. "Selection and Fitting of Mixed Models in Sugarcane Yield Trials," Agriculture, MDPI, vol. 12(3), pages 1-12, March.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:416-:d:771988
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/3/416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/3/416/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kenward, Michael G. & Roger, James H., 2009. "An improved approximation to the precision of fixed effects from restricted maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2583-2595, May.
    2. S. J. Welham & R. Thompson, 1997. "Likelihood Ratio Tests for Fixed Model Terms using Residual Maximum Likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(3), pages 701-714.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vembye, Mikkel Helding & Pustejovsky, James E & Pigott, Terri, 2022. "Power Approximations for Meta-Analysis of Dependent Effect Sizes," MetaArXiv 6tp9y, Center for Open Science.
    2. Mikkel Helding Vembye & James Eric Pustejovsky & Therese Deocampo Pigott, 2023. "Power Approximations for Overall Average Effects in Meta-Analysis With Dependent Effect Sizes," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 70-102, February.
    3. Friedrich, Sarah & Brunner, Edgar & Pauly, Markus, 2017. "Permuting longitudinal data in spite of the dependencies," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 255-265.
    4. Paniagua, Victoria, 2022. "When clients vote for brokers: How elections improve public goods provision in urban slums," World Development, Elsevier, vol. 158(C).
    5. Pringle, M.J. & Marchant, B.P. & Lark, R.M., 2008. "Analysis of two variants of a spatially distributed crop model, using wavelet transforms and geostatistics," Agricultural Systems, Elsevier, vol. 98(2), pages 135-146, September.
    6. Rodríguez-Díaz, Juan M., 2017. "Computation of c-optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 287-296.
    7. Vijayalakshmi Sridharan & Kristin A Johnson & Reid D Landes & Maohua Cao & Preeti Singh & Gail Wagoner & Abdallah Hayar & Emily D Sprick & Kayla A Eveld & Anusha Bhattacharyya & Kimberly J Krager & Nu, 2021. "Sex-dependent effects of genetic upregulation of activated protein C on delayed effects of acute radiation exposure in the mouse heart, small intestine, and skin," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-23, May.
    8. Nguyen Ngoc Thach, 2023. "Applying Monte Carlo Simulations to a Small Data Analysis of a Case of Economic Growth in COVID-19 Times," SAGE Open, , vol. 13(2), pages 21582440231, June.
    9. Orelien, Jean G. & Edwards, Lloyd J., 2008. "Fixed-effect variable selection in linear mixed models using R2 statistics," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1896-1907, January.
    10. de Breij, Sascha & Huisman, Martijn & Deeg, Dorly J.H., 2020. "Macro-level determinants of post-retirement health and health inequalities: A multilevel analysis of 18 European countries," Social Science & Medicine, Elsevier, vol. 245(C).
    11. Adriaan Liebenberg & John Richard (Ruan) van der Nest & Ailsa G. Hardie & Johan Labuschagne & Pieter Andreas Swanepoel, 2020. "Extent of Soil Acidity in No-Tillage Systems in the Western Cape Province of South Africa," Land, MDPI, vol. 9(10), pages 1-17, September.
    12. Sarah L. McGuinness & Josphin Johnson & Owen Eades & Peter A. Cameron & Andrew Forbes & Jane Fisher & Kelsey Grantham & Carol Hodgson & Peter Hunter & Jessica Kasza & Helen L. Kelsall & Maggie Kirkman, 2022. "Mental Health Outcomes in Australian Healthcare and Aged-Care Workers during the Second Year of the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(9), pages 1-15, April.
    13. Manor, Orly & Zucker, D.M.David M., 2004. "Small sample inference for the fixed effects in the mixed linear model," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 801-817, July.
    14. Jing, Qi & Bouman, Bas & van Keulen, Herman & Hengsdijk, Huib & Cao, Weixing & Dai, Tingbo, 2008. "Disentangling the effect of environmental factors on yield and nitrogen uptake of irrigated rice in Asia," Agricultural Systems, Elsevier, vol. 98(3), pages 177-188, October.
    15. Friedrich, Sarah & Konietschke, Frank & Pauly, Markus, 2017. "A wild bootstrap approach for nonparametric repeated measurements," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 38-52.
    16. Stein, Markus Chagas & da Silva, Michel Ferreira & Duczmal, Luiz Henrique, 2014. "Alternatives to the usual likelihood ratio test in mixed linear models," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 184-197.
    17. Pringle, M.J. & Baxter, S.J. & Marchant, B.P. & Lark, R.M., 2008. "Spatial analysis of the error in a model of soil nitrogen," Ecological Modelling, Elsevier, vol. 211(3), pages 453-467.
    18. Daniel M. McNeish, 2016. "Using Data-Dependent Priors to Mitigate Small Sample Bias in Latent Growth Models," Journal of Educational and Behavioral Statistics, , vol. 41(1), pages 27-56, February.
    19. Johannes Forkman, 2013. "The use of a reference variety for comparisons in incomplete series of crop variety trials," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2681-2698, December.
    20. Walter Dempsey & Peter McCullagh, 2018. "Survival models and health sequences," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 550-584, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:416-:d:771988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.