IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i3p386-d767467.html
   My bibliography  Save this article

New Sensing Technologies for Grain Moisture

Author

Listed:
  • Omar Flor

    (Ingeniería Industrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de las Américas, Quito 170125, Ecuador)

  • Héctor Palacios

    (Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de las Américas, Quito 170125, Ecuador
    Ingeniería de Alimentos, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 090150, Ecuador)

  • Franyelit Suárez

    (Ingeniería Industrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de las Américas, Quito 170125, Ecuador)

  • Katherine Salazar

    (Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de las Américas, Quito 170125, Ecuador)

  • Luis Reyes

    (Maestría en Agroindustrias, Universidad de las Américas, Quito 170125, Ecuador)

  • Mario González

    (SI2Lab, Universidad de las Américas, Quito 170125, Ecuador)

  • Karina Jiménez

    (Departamento de Investigación, Universidad de las Américas, Quito 170125, Ecuador)

Abstract

In this review, we present a description of conventional technologies and new advances for the estimation and sense of moisture content in grains. The operating principles, accuracies and response times are described. The review considers an exhaustive search of scientific developments and patent registrations. It was concluded that most of the new developments correspond to methods of which the measurement principles are based on the analysis of the electrical characteristics of the grains. In addition, new methods of image analysis have been implemented that provide measurements with reduced response times and with precisions of utility for its application in the agro-industrial field. In addition to this, wireless communication technologies have been implemented that allow the implementation of moisture measurement methods in moving grains within processing chains.

Suggested Citation

  • Omar Flor & Héctor Palacios & Franyelit Suárez & Katherine Salazar & Luis Reyes & Mario González & Karina Jiménez, 2022. "New Sensing Technologies for Grain Moisture," Agriculture, MDPI, vol. 12(3), pages 1-26, March.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:386-:d:767467
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/3/386/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/3/386/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:386-:d:767467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.