IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i3p346-d760925.html
   My bibliography  Save this article

Design and Experiment of Automatic Clip-Feeding Mechanism for Vegetable-Grafting Robot

Author

Listed:
  • Kai Jiang

    (Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center of Intelligent Equipment for Agricultural (NERCITA), Beijing 100097, China)

  • Wenzhong Guo

    (Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center of Intelligent Equipment for Agricultural (NERCITA), Beijing 100097, China)

  • Liping Chen

    (Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center of Intelligent Equipment for Agricultural (NERCITA), Beijing 100097, China)

  • Wenqian Huang

    (Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center of Intelligent Equipment for Agricultural (NERCITA), Beijing 100097, China)

  • Yiyuan Ge

    (College of Mechanical and Engineering, Jiamusi University, Jiamusi 154007, China)

  • Xiaoming Wei

    (Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center of Intelligent Equipment for Agricultural (NERCITA), Beijing 100097, China)

Abstract

Aiming to solve the problems of poor performance and low stability in the automatic clip-feeding of a grafting machine, an automatic clip-feeding mechanism with a precise single-clip discharge mechanism was designed, and a clip-feeding performance test was carried out. Taking the grafting clip of the 2TJGQ-800 type of vegetable-grafting robot as the research object, the clamping-force analysis model of the grafting clip was constructed by ABUQUS finite-element analysis software, and the variation law of clamping force, steel wire diameter, and opening deformation, as well as the calculation equation of clamping force, were obtained. The grafting clip model was verified by mechanical test, and test results showed that the grafting clip with a steel wire diameter of 0.7 mm proved safe and reliable for grafted cucumber and watermelon seedlings; the grafting clip with steel wire diameter of 0.8 mm had a risk of producing injury to grafted cucumber and watermelon seedlings when clamping. The method of single-clip discharge in the inclined discharging slideway was put forward, and the components for clip discharge and clip pushing were designed. The critical thrust for sending out the grafting clip in the clip-feeding slideway was 0.603 N after analyzing the force status of the grafting clip in the clip-feeding slideway. Test results showed that the success rate of automatic clip-feeding reached 98.67% when inclination angle of row-discharging slideway was 50° and the thrust of clip-pushing cylinder (input air pressure of 0.4 MPa) was 8.04 N, which met the technical requirements of mechanical grafting. The inclination of the grafting clip and the damaged clip in the feeding slideway is the main reason for the failure of clip-feeding. The research results can provide theoretical and design references for the innovative research of the automatic clip-feeding mechanism of grafting robots.

Suggested Citation

  • Kai Jiang & Wenzhong Guo & Liping Chen & Wenqian Huang & Yiyuan Ge & Xiaoming Wei, 2022. "Design and Experiment of Automatic Clip-Feeding Mechanism for Vegetable-Grafting Robot," Agriculture, MDPI, vol. 12(3), pages 1-16, February.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:346-:d:760925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/3/346/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/3/346/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Filippos Bantis & Athanasios Koukounaras & Anastasios S. Siomos & Christodoulos Dangitsis, 2020. "Impact of Scion and Rootstock Seedling Quality Selection on the Vigor of Watermelon–Interspecific Squash Grafted Seedlings," Agriculture, MDPI, vol. 10(8), pages 1-10, August.
    2. Changjin Liu & Weiguo Lin & Chongran Feng & Xiangshuai Wu & Xiaohu Fu & Mu Xiong & Zhilong Bie & Yuan Huang, 2021. "A New Grafting Method for Watermelon to Inhibit Rootstock Regrowth and Enhance Scion Growth," Agriculture, MDPI, vol. 11(9), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengyun Xu & Tong Zhang & Liping Chen & Wenqian Huang & Kai Jiang, 2022. "Study on the Method of Matched Splice Grafting for Melon Seedlings Based on Visual Image," Agriculture, MDPI, vol. 12(7), pages 1-16, June.
    2. Shan Chen & Huan Liang & Qian Zhang & Qingchun Feng & Tao Li & Liping Chen & Kai Jiang, 2023. "Melon Robotic Grafting: A Study on the Precision Cutting Mechanism and Experimental Validation," Agriculture, MDPI, vol. 13(11), pages 1-24, November.
    3. Wanxia Yang & Jiaqi Zhuang & Yuan Tian & Shiying Wan & Siyu Ding & Mei Zhang & Shengzuo Fang, 2023. "Technical Scheme for Cutting Seedlings of Cyclocarya paliurus under Intelligent Control of Environmental Factors," Sustainability, MDPI, vol. 15(13), pages 1-13, July.
    4. Xiaohu Fu & Jiahao Shi & Yuan Huang & Enzhao Zhu & Zhilong Bie & Weiguo Lin, 2022. "Design and Experiment of Full-Tray Grafting Device for Grafted Melon Seedling Production," Agriculture, MDPI, vol. 12(6), pages 1-12, June.
    5. Changjin Liu & Weiguo Lin & Chongran Feng & Xiangshuai Wu & Xiaohu Fu & Mu Xiong & Zhilong Bie & Yuan Huang, 2021. "A New Grafting Method for Watermelon to Inhibit Rootstock Regrowth and Enhance Scion Growth," Agriculture, MDPI, vol. 11(9), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:346-:d:760925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.