IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i2p285-d751484.html
   My bibliography  Save this article

Benchmarking Machine Learning Approaches to Evaluate the Cultivar Differentiation of Plum ( Prunus domestica L.) Kernels

Author

Listed:
  • Ewa Ropelewska

    (Fruit and Vegetable Storage and Processing Department, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland)

  • Xiang Cai

    (Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
    Department of Ecology, School of Biology, Shenzhen MSU-BIT University, Dayun Newtown 1, Shenzhen 518172, China)

  • Zhan Zhang

    (University Office, Shenzhen MSU-BIT University, Dayun Newtown 1, Shenzhen 518172, China)

  • Kadir Sabanci

    (Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey)

  • Muhammet Fatih Aslan

    (Department of Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey)

Abstract

Plum fruit and kernels offer bioactive material for industrial production. The promising procedure for distinguishing plum kernel cultivars used in this study comprised two stages: image analysis to compute the texture parameters of plum kernels belonging to three cultivars ‘Emper’, ‘Kalipso’, and ‘Polinka’, and discriminant analysis using machine learning algorithms to classify plum kernel cultivars based on selected textures with the highest discriminative power. The discriminative models built separately for sets of textures selected from all color channels L , a , b , R , G , B , U , V , S , X , Y , Z , color space Lab and color channel b using the KStar (Lazy), PART (Rules), and LMT (Trees) classifiers provided the highest average accuracies reaching 98% in the case of the color space Lab and the KStar classifier. In this case, individual cultivars were discriminated with the accuracies of 97% for ‘Emper’ and ‘Kalipso’ to 99% for ‘Polinka’. The values of other performance metrics were also satisfactory, higher than 0.95. The ROC curves were quite smooth and steady with the most satisfactory curve for the ‘Kalipso’ kernels. The present study sheds light on an objective, non-destructive, and inexpensive procedure for cultivar discrimination of plum kernels.

Suggested Citation

  • Ewa Ropelewska & Xiang Cai & Zhan Zhang & Kadir Sabanci & Muhammet Fatih Aslan, 2022. "Benchmarking Machine Learning Approaches to Evaluate the Cultivar Differentiation of Plum ( Prunus domestica L.) Kernels," Agriculture, MDPI, vol. 12(2), pages 1-12, February.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:285-:d:751484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/2/285/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/2/285/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meenakshi Sharma & Prashant Kaushik & Aakash Chawade, 2021. "Frontiers in the Solicitation of Machine Learning Approaches in Vegetable Science Research," Sustainability, MDPI, vol. 13(15), pages 1-14, August.
    2. Ewa Ropelewska & Kadir Sabanci & Muhammet Fatih Aslan, 2021. "Discriminative Power of Geometric Parameters of Different Cultivars of Sour Cherry Pits Determined Using Machine Learning," Agriculture, MDPI, vol. 11(12), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goksu Tuysuzoglu & Kokten Ulas Birant & Derya Birant, 2023. "Rainfall Prediction Using an Ensemble Machine Learning Model Based on K-Stars," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    2. Ewa Ropelewska & Kadir Sabanci & Muhammet Fatih Aslan & Necati Çetin, 2023. "Rapid Detection of Changes in Image Textures of Carrots Caused by Freeze-Drying using Image Processing Techniques and Machine Learning Algorithms," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    3. Hamna Waheed & Noureen Zafar & Waseem Akram & Awais Manzoor & Abdullah Gani & Saif ul Islam, 2022. "Deep Learning Based Disease, Pest Pattern and Nutritional Deficiency Detection System for “Zingiberaceae” Crop," Agriculture, MDPI, vol. 12(6), pages 1-17, May.
    4. Ewa Ropelewska & Ahmed M. Rady & Nicholas J. Watson, 2023. "Apricot Stone Classification Using Image Analysis and Machine Learning," Sustainability, MDPI, vol. 15(12), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kadir Sabanci & Muhammet Fatih Aslan & Vanya Slavova & Stefka Genova, 2022. "The Use of Fluorescence Spectroscopic Data and Machine-Learning Algorithms to Discriminate Red Onion Cultivar and Breeding Line," Agriculture, MDPI, vol. 12(10), pages 1-11, October.
    2. Younés Noutfia & Ewa Ropelewska, 2022. "Comprehensive Characterization of Date Palm Fruit ‘Mejhoul’ ( Phoenix dactylifera L.) Using Image Analysis and Quality Attribute Measurements," Agriculture, MDPI, vol. 13(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:285-:d:751484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.