IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i12p2141-d1001874.html
   My bibliography  Save this article

Research on Laying Hens Feeding Behavior Detection and Model Visualization Based on Convolutional Neural Network

Author

Listed:
  • Hongyun Hao

    (College of Engineering, China Agriculture University, Beijing 100083, China)

  • Peng Fang

    (College of Engineering, Jiangxi Agriculture University, Nanchang 330045, China)

  • Wei Jiang

    (College of Engineering, China Agriculture University, Beijing 100083, China)

  • Xianqiu Sun

    (Shandong Minhe Animal Husbandry Co., Ltd., Yantai 265600, China)

  • Liangju Wang

    (College of Engineering, China Agriculture University, Beijing 100083, China)

  • Hongying Wang

    (College of Engineering, China Agriculture University, Beijing 100083, China)

Abstract

The feeding behavior of laying hens is closely related to their health and welfare status. In large-scale breeding farms, monitoring the feeding behavior of hens can effectively improve production management. However, manual monitoring is not only time-consuming but also reduces the welfare level of breeding staff. In order to realize automatic tracking of the feeding behavior of laying hens in the stacked cage laying houses, a feeding behavior detection network was constructed based on the Faster R-CNN network, which was characterized by the fusion of a 101 layers-deep residual network (ResNet101) and Path Aggregation Network (PAN) for feature extraction, and Intersection over Union (IoU) loss function for bounding box regression. The ablation experiments showed that the improved Faster R-CNN model enhanced precision, recall and F1-score from 84.40%, 72.67% and 0.781 to 90.12%, 79.14%, 0.843, respectively, which could enable the accurate detection of feeding behavior of laying hens. To understand the internal mechanism of the feeding behavior detection model, the convolutional kernel features and the feature maps output by the convolutional layers at each stage of the network were then visualized in an attempt to decipher the mechanisms within the Convolutional Neural Network(CNN) and provide a theoretical basis for optimizing the laying hens’ behavior recognition network.

Suggested Citation

  • Hongyun Hao & Peng Fang & Wei Jiang & Xianqiu Sun & Liangju Wang & Hongying Wang, 2022. "Research on Laying Hens Feeding Behavior Detection and Model Visualization Based on Convolutional Neural Network," Agriculture, MDPI, vol. 12(12), pages 1-12, December.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2141-:d:1001874
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/12/2141/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/12/2141/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kailin Jiang & Tianyu Xie & Rui Yan & Xi Wen & Danyang Li & Hongbo Jiang & Ning Jiang & Ling Feng & Xuliang Duan & Jianjun Wang, 2022. "An Attention Mechanism-Improved YOLOv7 Object Detection Algorithm for Hemp Duck Count Estimation," Agriculture, MDPI, vol. 12(10), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiuguo Zou & Zheng Liu & Xiaochen Zhu & Wentian Zhang & Yan Qian & Yuhua Li, 2023. "Application of Vision Technology and Artificial Intelligence in Smart Farming," Agriculture, MDPI, vol. 13(11), pages 1-4, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehrnaz Farokhnejad Afshar & Zahra Shirmohammadi & Seyyed Amir Ali Ghafourian Ghahramani & Azadeh Noorparvar & Ali Mohammad Afshin Hemmatyar, 2023. "An Efficient Approach to Monocular Depth Estimation for Autonomous Vehicle Perception Systems," Sustainability, MDPI, vol. 15(11), pages 1-21, May.
    2. Wael M. Elmessery & Joaquín Gutiérrez & Gomaa G. Abd El-Wahhab & Ibrahim A. Elkhaiat & Ibrahim S. El-Soaly & Sadeq K. Alhag & Laila A. Al-Shuraym & Mohamed A. Akela & Farahat S. Moghanm & Mohamed F. A, 2023. "YOLO-Based Model for Automatic Detection of Broiler Pathological Phenomena through Visual and Thermal Images in Intensive Poultry Houses," Agriculture, MDPI, vol. 13(8), pages 1-21, July.
    3. Dimitre D. Dimitrov, 2023. "Internet and Computers for Agriculture," Agriculture, MDPI, vol. 13(1), pages 1-7, January.
    4. Yaxin Wang & Xinyuan Liu & Fanzhen Wang & Dongyue Ren & Yang Li & Zhimin Mu & Shide Li & Yongcheng Jiang, 2023. "Self-Attention-Mechanism-Improved YoloX-S for Briquette Biofuels Object Detection," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    5. Jiajun Lai & Yun Liang & Yingjie Kuang & Zhannan Xie & Hongyuan He & Yuxin Zhuo & Zekai Huang & Shijie Zhu & Zenghang Huang, 2023. "IO-YOLOv5: Improved Pig Detection under Various Illuminations and Heavy Occlusion," Agriculture, MDPI, vol. 13(7), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2141-:d:1001874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.