IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i11p1964-d978925.html
   My bibliography  Save this article

Plant Disease Detection Strategy Based on Image Texture and Bayesian Optimization with Small Neural Networks

Author

Listed:
  • Juan Felipe Restrepo-Arias

    (Escuela de Ciencias Aplicadas e Ingeniería, Universidad EAFIT, Medellín 050022, Colombia)

  • John W. Branch-Bedoya

    (Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Medellín 050041, Colombia)

  • Gabriel Awad

    (Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Medellín 050041, Colombia)

Abstract

A novel method of disease diagnosis, based on images that capture every part of a diseased plant, such as the leaf, the fruit, the root, etc., is presented in this paper. As is well known, the plant genotypic and phenotypic characteristics can significantly impact how plants are affected by viruses, bacteria, or fungi that cause disease. Assume that these data are unknown at the outset and that the appropriate precautions are not taken to prevent classifications skewed toward uninteresting traits. An approach to avoid categorization bias brought on by the morphology of leaves is suggested in this study. The basis of this approach is the extraction of textural features. Additionally, Bayesian Optimization is suggested to obtain training hyperparameters that enable the creation of better-trained artificial neural networks. First, we initially pre-processed the images from the PlantVillage dataset to remove background noise. Then, tiles from images were used to reduce any potential bias from leaf form. Finally, several cutting-edge tiny convolutional neural networks (CNNs), created for contexts with little processing power, were trained on a new dataset of 85 × 85 × 3 px images. MobileNet, which had a 96.31% accuracy rate, and SqueezeNet, which had a 95.05% accuracy rate, were the models that predicted the best performance. The results were then examined using Precision and Recall measures, which are important for identifying plant diseases.

Suggested Citation

  • Juan Felipe Restrepo-Arias & John W. Branch-Bedoya & Gabriel Awad, 2022. "Plant Disease Detection Strategy Based on Image Texture and Bayesian Optimization with Small Neural Networks," Agriculture, MDPI, vol. 12(11), pages 1-18, November.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1964-:d:978925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/11/1964/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/11/1964/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Nagaraju & Priyanka Chawla, 2020. "Systematic review of deep learning techniques in plant disease detection," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 547-560, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mosleh Hmoud Al-Adhaileh & Amit Verma & Theyazn H. H. Aldhyani & Deepika Koundal, 2023. "Potato Blight Detection Using Fine-Tuned CNN Architecture," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    2. Bulent Tugrul & Elhoucine Elfatimi & Recep Eryigit, 2022. "Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review," Agriculture, MDPI, vol. 12(8), pages 1-21, August.
    3. Hamed Alghamdi & Turki Turki, 2023. "PDD-Net: Plant Disease Diagnoses Using Multilevel and Multiscale Convolutional Neural Network Features," Agriculture, MDPI, vol. 13(5), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1964-:d:978925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.