IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i11p1889-d968347.html
   My bibliography  Save this article

Design and Test of a Force Feedback Seedling Pick-Up Gripper for an Automatic Transplanter

Author

Listed:
  • Pengfei Li

    (College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China
    Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan Province, Luoyang 471003, China)

  • Zhihao Yun

    (College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China)

  • Kaihang Gao

    (College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China)

  • Laiqiang Si

    (College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China)

  • Xinwu Du

    (College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China
    Longmen Laboratory, Luoyang 471000, China)

Abstract

Aiming at the problems of seedling injury and planting leakage due to the lack of seeding clamping force detection and real-time control in vegetable transplanting, a force feedback gripper was developed based on the linear Hall element. The mechanical properties of the stem of pepper cavity seedlings were first analyzed to provide a basis for the design of the gripper. A linear Hall sensor, a magnet, an elastic actuator, and an Arduino Uno development board make up the grasping force detecting system. Upon picking up a seedling, the elastic actuator, which is connected to the magnet, bends like a cantilever beam. As a result of the micro-displacement created by the elastic actuator, the Hall sensor’s voltage changes and can be used to determine the clamping force. Detection avoids direct contact between the sensor and the cavity seedlings, reducing the risk of sensor damage. Finite element method (FEM) simulations were used to determine the initial spacing between the magnet and Hall sensor and the effect of the elastic actuator. Control commands are sent to the servo based on the gripping force collected by the Arduino Uno board. Finally, the functions of accurate measurement, display, storage, and control of the clamping force of the cavity tray seedlings are realized, so that the damage rate of the cavity tray seedlings is reduced. In order to explore the influence of the elastic actuators on the clamping force detection system and the performance of the force feedback gripper, a calibration test of the clamping force detection system and a test of the indoor transplantation of pepper seedlings were carried out. Based on the calibration test, the clamping force detection system has a sensitivity of 0.0693 V/N, linearity of 3.21%, an average linear coefficient of determination of 0.986, and a range of 10 N, which fully meet the clamping force detection accuracy requirements during transplantation. Indoor tests showed that the force feedback gripper was stable and adaptable. This study can provide a reference for detecting and controlling clamping forces during transplantation.

Suggested Citation

  • Pengfei Li & Zhihao Yun & Kaihang Gao & Laiqiang Si & Xinwu Du, 2022. "Design and Test of a Force Feedback Seedling Pick-Up Gripper for an Automatic Transplanter," Agriculture, MDPI, vol. 12(11), pages 1-17, November.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1889-:d:968347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/11/1889/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/11/1889/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1889-:d:968347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.