IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i10p1726-d947151.html
   My bibliography  Save this article

Temporal and Spatial Differentiation and Driving Factors of China’s Agricultural Eco-Efficiency Considering Agricultural Carbon Sinks

Author

Listed:
  • Shilin Li

    (College of Agronomy, Northwest A&F University, Yangling 712100, China
    The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling 712100, China)

  • Zhiyuan Zhu

    (College of Agronomy, Northwest A&F University, Yangling 712100, China
    The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling 712100, China)

  • Zhenzhong Dai

    (College of Agronomy, Northwest A&F University, Yangling 712100, China
    The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling 712100, China)

  • Jiajia Duan

    (College of Agronomy, Northwest A&F University, Yangling 712100, China
    The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling 712100, China)

  • Danmeng Wang

    (College of Agronomy, Northwest A&F University, Yangling 712100, China
    The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling 712100, China)

  • Yongzhong Feng

    (College of Agronomy, Northwest A&F University, Yangling 712100, China
    The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling 712100, China)

Abstract

Climate change, greenhouse gas emissions, and food security have put forward higher requirements for sustainable agricultural development. Agricultural ecological efficiency (AEE) is an important indicator to evaluate the sustainable development of agriculture. Low carbon agriculture promotes sustainable agricultural development. Agricultural carbon sinks are an important output of agricultural production, but they have not been fully reflected in the current research on agricultural ecological efficiency. In this study, agricultural carbon sinks are considered as one of the expected outputs of AEE. The data envelopment method was used to measure the AEE of 31 provincial-level administrative regions in China from 2000 to 2019, and the AEE of China was compared with and without carbon sinks. The Gaussian kernel function was used to estimate the time evolution of regional differences in AEE. A geodetector model was used to detect the drivers of spatial differentiation of AEE in China. The results showed that considering agricultural carbon sinks as one of the expected measurement outputs brings the estimated AEE closer to reality. From 2000 to 2019, China’s AEE showed an upward trend, and the efficiency value increased from 0.48 to 0.95, an increase of 97.92%. The spatial distribution pattern of AEE in China was Northeast > West > Central > East, with obvious differences among provinces. The industrialization level, urban–rural gap, agricultural economic level, agricultural disaster rate, and urbanization level were the leading driving forces for the spatial differentiation of AEE in China. The research will help to reveal the dynamic characteristics, spatial differentiation characteristics, and driving factors of China’s agricultural ecological efficiency, and provide a scientific reference for the realization of sustainable agricultural development and high-quality development.

Suggested Citation

  • Shilin Li & Zhiyuan Zhu & Zhenzhong Dai & Jiajia Duan & Danmeng Wang & Yongzhong Feng, 2022. "Temporal and Spatial Differentiation and Driving Factors of China’s Agricultural Eco-Efficiency Considering Agricultural Carbon Sinks," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1726-:d:947151
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/10/1726/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/10/1726/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dongsheng Zhang & Wei Gao & Yiqing Lv, 2020. "The Triple Logic and Choice Strategy of Rural Revitalization in the 70 Years since the Founding of the People’s Republic of China, Based on the Perspective of Historical Evolution," Agriculture, MDPI, vol. 10(4), pages 1-19, April.
    2. Zhenling Cui & Hongyan Zhang & Xinping Chen & Chaochun Zhang & Wenqi Ma & Chengdong Huang & Weifeng Zhang & Guohua Mi & Yuxin Miao & Xiaolin Li & Qiang Gao & Jianchang Yang & Zhaohui Wang & Youliang Y, 2018. "Pursuing sustainable productivity with millions of smallholder farmers," Nature, Nature, vol. 555(7696), pages 363-366, March.
    3. Liu, Yansui & Zou, Lilin & Wang, Yongsheng, 2020. "Spatial-temporal characteristics and influencing factors of agricultural eco-efficiency in China in recent 40 years," Land Use Policy, Elsevier, vol. 97(C).
    4. Yansui Liu & Yuanzhi Guo & Yang Zhou, 2018. "Poverty alleviation in rural China: policy changes, future challenges and policy implications," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 10(2), pages 241-259, May.
    5. Wang, Sun Ling & Huang, Jikun & Wang, Xiaobing & Tuan, Francis, 2019. "Are China’s regional agricultural productivities converging: How and why?," Food Policy, Elsevier, vol. 86(C), pages 1-1.
    6. Shili Guo & Zhiyong Hu & Hanzhe Ma & Dingde Xu & Renwei He, 2022. "Spatial and Temporal Variations in the Ecological Efficiency and Ecosystem Service Value of Agricultural Land in China," Agriculture, MDPI, vol. 12(6), pages 1-23, June.
    7. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    8. Jules Pretty & Tim G. Benton & Zareen Pervez Bharucha & Lynn V. Dicks & Cornelia Butler Flora & H. Charles J. Godfray & Dave Goulson & Sue Hartley & Nic Lampkin & Carol Morris & Gary Pierzynski & P. V, 2018. "Global assessment of agricultural system redesign for sustainable intensification," Nature Sustainability, Nature, vol. 1(8), pages 441-446, August.
    9. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    10. Livio D. DeSimone & Frank Popoff, 2000. "Eco-Efficiency: The Business Link to Sustainable Development," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262541092, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu He & Wenkuan Chen, 2023. "Evaluation of Sustainable Development Policy of Sichuan Citrus Industry in China Based on DEA–Malmquist Index and DID Model," Sustainability, MDPI, vol. 15(5), pages 1-23, February.
    2. Shulong Li & Zhizhang Wang, 2023. "Time, Spatial and Component Characteristics of Agricultural Carbon Emissions of China," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    3. Xiaoyan Sun & Shuya Guang & Jingjing Cao & Fengying Zhu & Jianxu Liu & Songsak Sriboonchitta, 2023. "Effect of Agricultural Production Trusteeship on Agricultural Carbon Emission Reduction," Agriculture, MDPI, vol. 13(7), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangyan Ran & Guangyao Wang & Huijuan Du & Mi Lv, 2023. "Relationship of Cooperative Management and Green and Low-Carbon Transition of Agriculture and Its Impacts: A Case Study of the Western Tarim River Basin," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    2. Mengyang Hou & Zenglei Xi & Suyan Zhao, 2022. "Evaluating the Heterogeneity Effect of Fertilizer Use Intensity on Agricultural Eco-Efficiency in China: Evidence from a Panel Quantile Regression Model," IJERPH, MDPI, vol. 19(11), pages 1-22, May.
    3. Xiyao Zhang & Xiaolei Wang & Jia Liu, 2023. "Spatial–Temporal Evolution and Influential Factors of Eco-Efficiency in Chinese Urban Agglomerations," Sustainability, MDPI, vol. 15(16), pages 1-29, August.
    4. Changming Cheng & Jieqiong Li & Yuqing Qiu & Chunfeng Gao & Qiang Gao, 2022. "Evaluating the Spatiotemporal Characteristics of Agricultural Eco-Efficiency Alongside China’s Carbon Neutrality Targets," IJERPH, MDPI, vol. 19(23), pages 1-18, November.
    5. Ashrafi, Ali & Seow, Hsin-Vonn & Lee, Lai Soon & Lee, Chew Ging, 2013. "The efficiency of the hotel industry in Singapore," Tourism Management, Elsevier, vol. 37(C), pages 31-34.
    6. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    7. Honma, Satoshi, 2012. "Environmental and economic efficiencies in the Asia-Pacific region," MPRA Paper 43361, University Library of Munich, Germany.
    8. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    9. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    10. Senhua Huang & Lingming Chen, 2023. "The Impact of the Digital Economy on the Urban Total-Factor Energy Efficiency: Evidence from 275 Cities in China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    11. Can Zhang & Jixia Li, 2024. "The Impact of Official Promotion Incentives on Urban Ecological Welfare Performance and Its Spatial Effect," Sustainability, MDPI, vol. 16(7), pages 1-29, April.
    12. Muliaman Hadad & Maximilian Hall & Karligash Kenjegalieva & Wimboh Santoso & Richard Simper, 2011. "Banking efficiency and stock market performance: an analysis of listed Indonesian banks," Review of Quantitative Finance and Accounting, Springer, vol. 37(1), pages 1-20, July.
    13. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    14. Jo, Ah-Hyun & Chang, Young-Tae, 2023. "The effect of airport efficiency on air traffic, using DEA and multilateral resistance terms gravity models," Journal of Air Transport Management, Elsevier, vol. 108(C).
    15. Hongli Liu & Xiaoyu Yan & Jinhua Cheng & Jun Zhang & Yan Bu, 2021. "Driving Factors for the Spatiotemporal Heterogeneity in Technical Efficiency of China’s New Energy Industry," Energies, MDPI, vol. 14(14), pages 1-21, July.
    16. Yi-Chung Hsu, 2014. "Efficiency in government health spending: a super slacks-based model," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(1), pages 111-126, January.
    17. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    18. Chenchen Su & Jinchuan Shen & Fei Wang, 2024. "Can income growth and environmental improvements go hand in hand? An empirical study of Chinese agriculture," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 70(7), pages 321-333.
    19. Fan Wang & Lili Feng & Jin Li & Lin Wang, 2020. "Environmental Regulation, Tenure Length of Officials, and Green Innovation of Enterprises," IJERPH, MDPI, vol. 17(7), pages 1-16, March.
    20. Ningyi Liu & Yongyu Wang, 2022. "Urban Agglomeration Ecological Welfare Performance and Spatial Convergence Research in the Yellow River Basin," Land, MDPI, vol. 11(11), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1726-:d:947151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.