IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i9p816-d623519.html
   My bibliography  Save this article

Growth and Energy Use Efficiency of Grafted Tomato Transplants as Affected by LED Light Quality and Photon Flux Density

Author

Listed:
  • Jianfeng Zheng

    (Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China)

  • Peidian Gan

    (Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China)

  • Fang Ji

    (Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China)

  • Dongxian He

    (Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China)

  • Po Yang

    (Beijing Lighting Valley Technology Company, Beijing 100083, China)

Abstract

This study was conducted to compare the effects of broad spectrum during the whole seedling period and photon flux density (PFD) in the healing stage on the growth and energy use efficiency of grafted tomato ( Lycopersicon esculentum Mill.) transplants in a plant factory. Fluorescent lights, white LED lights, and white plus red LED lights were applied at the growth processes of grafted tomato transplants from germination of rootstock and scion to post-grafting. Three levels of PFD (50, 100, 150 μmol m −2 s −1 ) were set in the healing stage under each kind of light quality. The results indicated that the growth and quality of grafted tomato transplants under different broad spectrums were influenced by the ratio of red to blue light (R/B ratio) and the ratio of red to far-red light (R/FR ratio). A higher R/B ratio was beneficial to total dry matter accumulation, but excessive red light had a negative effect on the root to shoot ratio and the seedling quality index. The higher blue light and R/FR ratio suppressed stem extension synergistically. The LED lights had good abilities to promote plant compactness and leaf thickness in comparison with fluorescent lights. The plant compactness and leaf thickness increased with the increase in daily light integral in the healing stage within a range from 2.5 to 7.5 mol m −2 d −1 (PFD, 50 to 150 μmol m −2 s −1 ). Compared to fluorescent lights, the LED lights showed more than 110% electrical energy saving for lighting during the whole seedling period. Higher PFD in the healing stage did not significantly increase the consumption of electric power for lighting. White plus red LED lights with an R/B ratio of 1.2 and R/FR ratio of 16 were suggested to replace fluorescent lights for grafted tomato transplants production considering the high quality of transplants and electrical energy saving, and PFD in the healing stage was recommended to be set to 150 μmol m −2 s −1 .

Suggested Citation

  • Jianfeng Zheng & Peidian Gan & Fang Ji & Dongxian He & Po Yang, 2021. "Growth and Energy Use Efficiency of Grafted Tomato Transplants as Affected by LED Light Quality and Photon Flux Density," Agriculture, MDPI, vol. 11(9), pages 1-14, August.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:9:p:816-:d:623519
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/9/816/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/9/816/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filippos Bantis & Athanasios Koukounaras, 2023. "Impact of Light on Horticultural Crops," Agriculture, MDPI, vol. 13(4), pages 1-4, April.
    2. Hwi-Chan Yang & Young-Ho Kim & Hyo-Jeung Byun & In-Lee Choi & Ngoc-Thang Vu & Dea-Hoon Kim & Hyuk-Sung Yoon & Dong-Cheol Jang, 2023. "Identification of Appropriate Light Intensity and Daytime Temperature for Cucumber ( Cucumis sativus L.) Seedlings in a Plant Factory with Artificial Lighting for Use as Grafting Material," Sustainability, MDPI, vol. 15(5), pages 1-15, March.
    3. Zhengnan Yan & Chunling Wang & Long Wang & Xin Li & Guanjie Wang & Yanjie Yang, 2022. "The Combinations of White, Blue, and UV-A Light Provided by Supplementary Light-Emitting Diodes Promoted the Quality of Greenhouse-Grown Cucumber Seedlings," Agriculture, MDPI, vol. 12(10), pages 1-14, October.
    4. Christos Melissas & Filippos Bantis & Christodoulos Dangitsis & Stefanos Kostas & Athanasios Koukounaras, 2022. "Proposed Light Wavelengths during Healing of Grafted Tomato Seedlings Enhance Their Adaptation to Transplant Shock," Agriculture, MDPI, vol. 12(6), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:9:p:816-:d:623519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.