IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i7p588-d581665.html
   My bibliography  Save this article

Development of Thermal Performance Metrics for Direct Gas-Fired Circulating Heaters

Author

Listed:
  • Benjamin C. Smith

    (Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA)

  • Brett C. Ramirez

    (Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA)

  • Steven J. Hoff

    (Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA)

Abstract

Many climate-controlled agricultural buildings use direct gas-fired circulating heaters (DGFCH) for supplement heat. There is no standardized test to calculate thermal efficiency for these heaters. This study aimed to develop a measurement system and analytical analysis for thermal efficiency, quantify the measurement uncertainty, and assess economics of DGFCH efficiency. The measurement system developed was similar to the ASHRAE 103 standard test stand with adaptations to connect the apparatus to the DGFCH. Two different propane measurement systems were used: input ratings < 30 kW used a mass flow system and input ratings > 30 kW used a volumetric gas meter. Three DGFCHs (21.9, 29.3, 73.3 kW) were tested to evaluate the system. Thermal efficiencies ranged from 92.4% to 100.9%. The resulting uncertainty (coverage factor of 2; ~95% Confidence Interval) ranged from 13.1% to 30.7% for input ratings of 56.3 to 11.4 kW. Key sources of uncertainty were propane and mass flow of air measurement. The economic impact of 1% difference in thermal efficiency ranged from USD $61.3 to $72.0 per heating season. Refinement of the testing system and procedures are needed to reduce the uncertainty. The application of this system will aid building designers in selection of DGFCHs for various applications.

Suggested Citation

  • Benjamin C. Smith & Brett C. Ramirez & Steven J. Hoff, 2021. "Development of Thermal Performance Metrics for Direct Gas-Fired Circulating Heaters," Agriculture, MDPI, vol. 11(7), pages 1-17, June.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:7:p:588-:d:581665
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/7/588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/7/588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuanlong Cui & Elmer Theo & Tugba Gurler & Yuehong Su & Riffat Saffa, 2020. "A comprehensive review on renewable and sustainable heating systems for poultry farming," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 15(1), pages 121-142.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisavet Giamouri & Foivos Zisis & Christina Mitsiopoulou & Christos Christodoulou & Athanasios C. Pappas & Panagiotis E. Simitzis & Charalampos Kamilaris & Fenia Galliou & Thrassyvoulos Manios & Alex, 2023. "Sustainable Strategies for Greenhouse Gas Emission Reduction in Small Ruminants Farming," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    2. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2021. "Macroeconomic Efficiency of Photovoltaic Energy Production in Polish Farms," Energies, MDPI, vol. 14(18), pages 1-19, September.
    3. Foivos Zisis & Elisavet Giamouri & Christina Mitsiopoulou & Christos Christodoulou & Charalampos Kamilaris & Alexandros Mavrommatis & Athanasios C. Pappas & Eleni Tsiplakou, 2023. "An Overview of Poultry Greenhouse Gas Emissions in the Mediterranean Area," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    4. Khawar Shahzad & Muhammad Sultan & Muhammad Bilal & Hadeed Ashraf & Muhammad Farooq & Takahiko Miyazaki & Uzair Sajjad & Imran Ali & Muhammad I. Hussain, 2021. "Experiments on Energy-Efficient Evaporative Cooling Systems for Poultry Farm Application in Multan (Pakistan)," Sustainability, MDPI, vol. 13(5), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:7:p:588-:d:581665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.