IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i6p517-d567973.html
   My bibliography  Save this article

Wide–Narrow Row Planting Pattern Increases Root Lodging Resistance by Adjusting Root Architecture and Root Physiological Activity in Maize ( Zea mays L.) in Northeast China

Author

Listed:
  • Shengqun Liu

    (Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Shulian Jian

    (Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    University of Chinese Academy of Sciences, Beijing 100864, China)

  • Xiangnan Li

    (Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Yang Wang

    (Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

Abstract

Root lodging (RL) in maize can reduce yield and grain quality. A wide–narrow row planting pattern can increase maize yield in the growing regions of northeastern China, but whether it can improve RL resistance is not clear. Therefore, in this study, the root architecture distribution, root physiological activity, and root lodging rate under planting pattern 1 (uniform ridge of 65 cm, east–west ridge direction) and pattern 2 (wide–narrow rows, 40 double narrow rows and 90 wide rows, north–south ridge direction) were studied. The results showed that the RL rate under pattern 2 was significantly lower than that under pattern 1. The number and diameter of nodal roots on the upper node, the root failure moment, and the root bleeding sap intensity at the 3 weeks after VT under pattern 2 were significantly higher than those under pattern 1. Root length density in the 0–40 cm soil layer tended to be inter-row distributed. Therefore, the RL resistance of maize under pattern 2 was increased through an adjustment in the root architecture distribution and root physiological activity in northeastern China.

Suggested Citation

  • Shengqun Liu & Shulian Jian & Xiangnan Li & Yang Wang, 2021. "Wide–Narrow Row Planting Pattern Increases Root Lodging Resistance by Adjusting Root Architecture and Root Physiological Activity in Maize ( Zea mays L.) in Northeast China," Agriculture, MDPI, vol. 11(6), pages 1-13, June.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:6:p:517-:d:567973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/6/517/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/6/517/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Hao & Xu, Ranran & Li, Yang & Yang, Liye & Shi, Wei & Liu, Yongjie & Chang, Shenghua & Hou, Fujiang & Jia, Qianmin, 2019. "Enhance root-bleeding sap flow and root lodging resistance of maize under a combination of nitrogen strategies and farming practices," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shoutian Ma & Fujian Mei & Tongchao Wang & Zhandong Liu & Shouchen Ma, 2021. "Stereoscopic Planting in Ridge and Furrow Increases Grain Yield of Maize ( Zea mays L.) by Reducing the Plant’s Competition for Water and Light Resources," Agriculture, MDPI, vol. 12(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Guangxin & Meng, Wenhui & Pan, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Effect of soil water content changes caused by ridge-furrow plastic film mulching on the root distribution and water use pattern of spring maize in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 261(C).
    2. Wu, Peng & Liu, Fu & Wang, Junying & Liu, Yihan & Gao, Yuan & Zhang, Xuanqi & Chen, Guangzhou & Huang, Fangyuan & Ahmad, Shakeel & Zhang, Peng & Cai, Tie & Jia, Zhikuan, 2022. "Suitable fertilization depth can improve the water productivity and maize yield by regulating development of the root system," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Fang, Heng & Li, Yuannong & Gu, Xiaobo & Chen, Pengpeng & Li, Yupeng, 2022. "Root characteristics, utilization of water and nitrogen, and yield of maize under biodegradable film mulching and nitrogen application," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Sun, Jun & Niu, Wenquan & Du, Yadan & Zhang, Qian & Li, Guochun & Ma, Li & Zhu, Jinjin & Mu, Fei & Sun, Dan & Gan, Haicheng & Siddique, Kadambot H.M. & Ali, Sajjad, 2023. "Combined tillage: A management strategy to improve rainfed maize tolerance to extreme events in northwestern China," Agricultural Water Management, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:6:p:517-:d:567973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.