IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i5p449-d555392.html
   My bibliography  Save this article

Influence of Mechanical and Intelligent Robotic Weed Control Methods on Energy Efficiency and Environment in Organic Sugar Beet Production

Author

Listed:
  • Indrė Bručienė

    (Institute of Agricultural Engineering and Safety, Agriculture Academy, Vytautas Magnus University, LT-44248 Kaunas, Lithuania)

  • Domantas Aleliūnas

    (Institute of Agricultural Engineering and Safety, Agriculture Academy, Vytautas Magnus University, LT-44248 Kaunas, Lithuania)

  • Egidijus Šarauskis

    (Institute of Agricultural Engineering and Safety, Agriculture Academy, Vytautas Magnus University, LT-44248 Kaunas, Lithuania)

  • Kęstutis Romaneckas

    (Institute of Agroecosystems and Soil Sciences, Agriculture Academy, Vytautas Magnus University, LT-44248 Kaunas, Lithuania)

Abstract

Rapidly warming climate, tightening environmental requirements, an aging society, rising wages, and demand for organic products are forcing farming to be more efficient and sustainable. The main aim of this study was to perform an analytical analysis and to determine the energy use and GHG emissions of organic sugar beet production using different weed control methods. Seven different methods of non-chemical weed control were compared. Mechanical inter-row loosening, inter-row cutting and mulching with weeds, weed smothering with catch crops, and thermal inter-row steaming were performed in field experiments at the Experimental Station of Vytautas Magnus University (Lithuania, 2015–2017). The other three, namely, automated mechanical inter-row loosening with cameras for row-tracking, inter-row loosening with a diesel-powered robot, and inter-row loosening with an electric robot were calculated analytically. The results showed that the average total energy use of organic sugar beet production was 27,844 MJ ha −1 , of which manure costs accounted for 48–53% and diesel fuel for 29–35%. An average energy efficiency ratio was 7.18, while energy productivity was 1.83 kg MJ ha −1 . Analysis of GHG emissions showed that the total average GHG emissions to the environment from organic sugar beet production amounted to 4552 kg CO 2eq ha −1 , and the average GHG emissions ratio was 4.47. The most sustainable organic sugar beet production was achieved by using mechanical inter-row loosening with a diesel-powered robot for weed control.

Suggested Citation

  • Indrė Bručienė & Domantas Aleliūnas & Egidijus Šarauskis & Kęstutis Romaneckas, 2021. "Influence of Mechanical and Intelligent Robotic Weed Control Methods on Energy Efficiency and Environment in Organic Sugar Beet Production," Agriculture, MDPI, vol. 11(5), pages 1-17, May.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:5:p:449-:d:555392
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/5/449/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/5/449/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Casey, J.W. & Holden, N.M., 2005. "Analysis of greenhouse gas emissions from the average Irish milk production system," Agricultural Systems, Elsevier, vol. 86(1), pages 97-114, October.
    2. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    3. Tabatabaeefar, A. & Emamzadeh, H. & Varnamkhasti, M. Ghasemi & Rahimizadeh, R. & Karimi, M., 2009. "Comparison of energy of tillage systems in wheat production," Energy, Elsevier, vol. 34(1), pages 41-45.
    4. Eskandari, Hamdollah & Attar, Sajjad, 2015. "Energy comparison of two rice cultivation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 666-671.
    5. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    6. Martin-Gorriz, B. & Soto-García, M. & Martínez-Alvarez, V., 2014. "Energy and greenhouse-gas emissions in irrigated agriculture of SE (southeast) Spain. Effects of alternative water supply scenarios," Energy, Elsevier, vol. 77(C), pages 478-488.
    7. Erdal, Gülistan & Esengün, Kemal & Erdal, Hilmi & Gündüz, Orhan, 2007. "Energy use and economical analysis of sugar beet production in Tokat province of Turkey," Energy, Elsevier, vol. 32(1), pages 35-41.
    8. Šarauskis, Egidijus & Masilionytė, Laura & Juknevičius, Darius & Buragienė, Sidona & Kriaučiūnienė, Zita, 2019. "Energy use efficiency, GHG emissions, and cost-effectiveness of organic and sustainable fertilisation," Energy, Elsevier, vol. 172(C), pages 1151-1160.
    9. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    10. Tzilivakis, J. & Warner, D.J. & May, M. & Lewis, K.A. & Jaggard, K., 2005. "An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK," Agricultural Systems, Elsevier, vol. 85(2), pages 101-119, August.
    11. Pishgar-Komleh, Seyyed Hassan & Omid, Mahmoud & Heidari, Mohammad Davoud, 2013. "On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province," Energy, Elsevier, vol. 59(C), pages 63-71.
    12. Aleksandra Dimitrijević & Marija Gavrilović & Sanjin Ivanović & Zoran Mileusnić & Rajko Miodragović & Saša Todorović, 2020. "Energy Use and Economic Analysis of Fertilizer Use in Wheat and Sugar Beet Production in Serbia," Energies, MDPI, vol. 13(9), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramona Cech & Friedrich Leisch & Johann G. Zaller, 2022. "Pesticide Use and Associated Greenhouse Gas Emissions in Sugar Beet, Apples, and Viticulture in Austria from 2000 to 2019," Agriculture, MDPI, vol. 12(6), pages 1-16, June.
    2. Egidijus Šarauskis & Vilma Naujokienė & Kristina Lekavičienė & Zita Kriaučiūnienė & Eglė Jotautienė & Algirdas Jasinskas & Raimonda Zinkevičienė, 2021. "Application of Granular and Non-Granular Organic Fertilizers in Terms of Energy, Environmental and Economic Efficiency," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    3. Jianxu Liu & Heng Wang & Sanzidur Rahman & Songsak Sriboonchitta, 2021. "Energy Efficiency, Energy Conservation and Determinants in the Agricultural Sector in Emerging Economies," Agriculture, MDPI, vol. 11(8), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Šarauskis, Egidijus & Masilionytė, Laura & Juknevičius, Darius & Buragienė, Sidona & Kriaučiūnienė, Zita, 2019. "Energy use efficiency, GHG emissions, and cost-effectiveness of organic and sustainable fertilisation," Energy, Elsevier, vol. 172(C), pages 1151-1160.
    2. Šarauskis, Egidijus & Romaneckas, Kęstutis & Jasinskas, Algirdas & Kimbirauskienė, Rasa & Naujokienė, Vilma, 2020. "Improving energy efficiency and environmental mitigation through tillage management in faba bean production," Energy, Elsevier, vol. 209(C).
    3. Darius Juknevičius & Zita Kriaučiūnienė & Algirdas Jasinskas & Egidijus Šarauskis, 2020. "Analysis of Changes in Soil Organic Carbon, Energy Consumption and Environmental Impact Using Bio-Products in the Production of Winter Wheat and Oilseed Rape," Sustainability, MDPI, vol. 12(19), pages 1-15, October.
    4. Yuan, Shen & Peng, Shaobing & Wang, Dong & Man, Jianguo, 2018. "Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China," Energy, Elsevier, vol. 160(C), pages 184-191.
    5. Morteza Zangeneh & Narges Banaeian & Sean Clark, 2021. "Meta-Analysis on Energy-Use Patterns of Cropping Systems in Iran," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    6. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.
    7. Soltani, Afshin & Rajabi, M.H. & Zeinali, E. & Soltani, Elias, 2013. "Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran," Energy, Elsevier, vol. 50(C), pages 54-61.
    8. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    9. Nassi o Di Nasso, N. & Bosco, S. & Di Bene, C. & Coli, A. & Mazzoncini, M. & Bonari, E., 2011. "Energy efficiency in long-term Mediterranean cropping systems with different management intensities," Energy, Elsevier, vol. 36(4), pages 1924-1930.
    10. Kaur, Navneet & Vashist, Krishan Kumar & Brar, A.S., 2021. "Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes," Energy, Elsevier, vol. 216(C).
    11. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    12. Leonidas Sotirios Kyrgiakos & Georgios Kleftodimos & George Vlontzos & Panos M. Pardalos, 2023. "A systematic literature review of data envelopment analysis implementation in agriculture under the prism of sustainability," Operational Research, Springer, vol. 23(1), pages 1-38, March.
    13. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    14. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    15. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Xiaoli & Liao, Qin & Fu, Hao & Cheng, Qingyue & Chen, Zongkui & Sun, Yongjian & Ma, Jun & Zhang, Jinyue & Li, Liangyu & Li, Na, 2023. "Unmanned aerial vehicle direct seeding or integrated mechanical transplanting, which will be the next step for mechanized rice production in China? —A comparison based on energy use efficiency and eco," Energy, Elsevier, vol. 273(C).
    16. Singh, Pritpal & Sandhu, Amarjeet Singh, 2023. "Energy budgeting and economics of potato (Solanum tuberosum L.) cultivation under different sowing methods in north-western India," Energy, Elsevier, vol. 269(C).
    17. Ghorbani, Reza & Mondani, Farzad & Amirmoradi, Shahram & Feizi, Hassan & Khorramdel, Surror & Teimouri, Mozhgan & Sanjani, Sara & Anvarkhah, Sepideh & Aghel, Hassan, 2011. "A case study of energy use and economical analysis of irrigated and dryland wheat production systems," Applied Energy, Elsevier, vol. 88(1), pages 283-288, January.
    18. Hossein Kazemi Author- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources (GUASNR), Iran, 2016. "Energy Balance in Modern Agroecosystems; Why and How?," Agricultural Research & Technology: Open Access Journal, Juniper Publishers Inc., vol. 1(5), pages 101-104, June.
    19. Maestre-Valero, J.F. & Martin-Gorriz, B. & Nicolas, E. & Martinez-Mate, M.A. & Martinez-Alvarez, V., 2018. "Deficit irrigation with reclaimed water in a citrus orchard. Energy and greenhouse-gas emissions analysis," Agricultural Systems, Elsevier, vol. 159(C), pages 93-102.
    20. Aleksandra Dimitrijević & Marija Gavrilović & Sanjin Ivanović & Zoran Mileusnić & Rajko Miodragović & Saša Todorović, 2020. "Energy Use and Economic Analysis of Fertilizer Use in Wheat and Sugar Beet Production in Serbia," Energies, MDPI, vol. 13(9), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:5:p:449-:d:555392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.