IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i1p63-d479940.html
   My bibliography  Save this article

Research on Measurement Method of Leaf Length and Width Based on Point Cloud

Author

Listed:
  • Yawei Wang

    (College of Information and Electrical Engineering, China Agricultural University, Qinghuadonglu No.17, Haidian District, Beijing 100083, China)

  • Yifei Chen

    (College of Information and Electrical Engineering, China Agricultural University, Qinghuadonglu No.17, Haidian District, Beijing 100083, China
    Engineering Practice Innovation Center, China Agricultural University, Qinghuadonglu No.17, Haidian District, Beijing 100083, China)

  • Xiangnan Zhang

    (College of Information and Electrical Engineering, China Agricultural University, Qinghuadonglu No.17, Haidian District, Beijing 100083, China)

  • Wenwen Gong

    (College of Information and Electrical Engineering, China Agricultural University, Qinghuadonglu No.17, Haidian District, Beijing 100083, China)

Abstract

Leaf is an important organ for photosynthesis and transpiration associated with the plants’ growth. Through the study of leaf phenotype, it the physiological characteristics produced by the interaction of the morphological parameters with the environment can be understood. In order to realize the assessment of the spatial morphology of leaves, a method based on three-dimensional stereo vision was introduced to extract the shape information, including the length and width of the leaves. Firstly, a depth sensor was used to collect the point cloud of plant leaves. Then, the leaf coordinate system was adjusted by principal component analysis to extract the region of interest; and compared with a cross-sectional method, the geodesic distance method, we proposed a method based on the cutting plane to obtain the intersecting line of the three-dimensional leaf model. Eggplant leaves were used to compare the accuracy of these methods in the measurement of a single leaf.

Suggested Citation

  • Yawei Wang & Yifei Chen & Xiangnan Zhang & Wenwen Gong, 2021. "Research on Measurement Method of Leaf Length and Width Based on Point Cloud," Agriculture, MDPI, vol. 11(1), pages 1-13, January.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:1:p:63-:d:479940
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/1/63/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/1/63/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longfei Zhou & Xiaohe Gu & Shu Cheng & Guijun Yang & Meiyan Shu & Qian Sun, 2020. "Analysis of Plant Height Changes of Lodged Maize Using UAV-LiDAR Data," Agriculture, MDPI, vol. 10(5), pages 1-14, May.
    2. Jizhang Wang & Yun Zhang & Rongrong Gu, 2020. "Research Status and Prospects on Plant Canopy Structure Measurement Using Visual Sensors Based on Three-Dimensional Reconstruction," Agriculture, MDPI, vol. 10(10), pages 1-27, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Queirós da Silva & André Silva Aguiar & Filipe Neves dos Santos & Armando Jorge Sousa & Danilo Rabino & Marcella Biddoccu & Giorgia Bagagiolo & Marco Delmastro, 2021. "Measuring Canopy Geometric Structure Using Optical Sensors Mounted on Terrestrial Vehicles: A Case Study in Vineyards," Agriculture, MDPI, vol. 11(3), pages 1-19, March.
    2. Yanming Li & Yibo Guo & Liang Gong & Chengliang Liu, 2023. "Harvesting Route Detection and Crop Height Estimation Methods for Lodged Farmland Based on AdaBoost," Agriculture, MDPI, vol. 13(9), pages 1-18, August.
    3. Jingqian Wen & Yanxin Yin & Yawei Zhang & Zhenglin Pan & Yindong Fan, 2022. "Detection of Wheat Lodging by Binocular Cameras during Harvesting Operation," Agriculture, MDPI, vol. 13(1), pages 1-14, December.
    4. Barbara Dobosz & Dariusz Gozdowski & Jerzy Koronczok & Jan Žukovskis & Elżbieta Wójcik-Gront, 2023. "Evaluation of Maize Crop Damage Using UAV-Based RGB and Multispectral Imagery," Agriculture, MDPI, vol. 13(8), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:1:p:63-:d:479940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.