IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i10p999-d655217.html
   My bibliography  Save this article

Review on Multitemporal Classification Methods of Satellite Images for Crop and Arable Land Recognition

Author

Listed:
  • Joanna Pluto-Kossakowska

    (Faculty of Geodesy and Cartography, Warsaw University of Technology, 00-661 Warsaw, Poland)

Abstract

This paper presents a review of the conducted research in the field of multitemporal classification methods used for the automatic identification of crops and arable land using optical satellite images. The review and systematization of these methods in terms of the effectiveness of the obtained results and their accuracy allows for the planning towards further development in this area. The state of the art analysis concerns various methodological approaches, including selection of data in terms of spatial resolution, selection of algorithms, as well as external conditions related to arable land use, especially the structure of crops. The results achieved with use of various approaches and classifiers and subsequently reported in the literature vary depending on the crops and area of analysis and the sources of satellite data. Hence, their review and systematic conclusions are needed, especially in the context of the growing interest in automatic processes of identifying crops for statistical purposes or monitoring changes in arable land. The results of this study show no significant difference between the accuracy achieved from different machine learning algorithms, yet on average artificial neural network classifiers have results that are better by a few percent than others. For very fragmented regions, better results were achieved using Sentinel-2, SPOT-5 rather than Landsat images, but the level of accuracy can still be improved. For areas with large plots there is no difference in the level of accuracy achieved from any HR images.

Suggested Citation

  • Joanna Pluto-Kossakowska, 2021. "Review on Multitemporal Classification Methods of Satellite Images for Crop and Arable Land Recognition," Agriculture, MDPI, vol. 11(10), pages 1-16, October.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:999-:d:655217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/10/999/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/10/999/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Amin Amani & Francesco Marinello, 2022. "A Deep Learning-Based Model to Reduce Costs and Increase Productivity in the Case of Small Datasets: A Case Study in Cotton Cultivation," Agriculture, MDPI, vol. 12(2), pages 1-13, February.
    2. Dong-Chong Hsiou & Fay Huang & Fu Jie Tey & Tin-Yu Wu & Yi-Chuan Lee, 2022. "An Automated Crop Growth Detection Method Using Satellite Imagery Data," Agriculture, MDPI, vol. 12(4), pages 1-25, April.
    3. Igor Teixeira & Raul Morais & Joaquim J. Sousa & António Cunha, 2023. "Deep Learning Models for the Classification of Crops in Aerial Imagery: A Review," Agriculture, MDPI, vol. 13(5), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:999-:d:655217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.