IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i10p1011-d657919.html
   My bibliography  Save this article

Method for Estimating Canopy Thickness Using Ultrasonic Sensor Technology

Author

Listed:
  • Huitao Zhou

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Weidong Jia

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Yong Li

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Mingxiong Ou

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

The accurate detection of canopy characteristics is the basis of precise variable spraying. Canopy characteristics such as canopy density, thickness and volume are needed to vary the pesticide application rate and adjust the spray flow rate and air supply volume. Canopy thickness is an important canopy dimension for the calculation of tree canopy volume in pesticide variable spraying. With regard to the phenomenon of ultrasonic waves with multiple reflections and the further analysis of echo signals, we found that there is a proportional relationship between the canopy thickness and echo interval time. In this paper, we propose a method to calculate canopy thickness using echo signals that come from ultrasonic sensors. To investigate the application of this method, we conducted a set of lab-based experiments with a simulated canopy. The results show that we can accurately estimate canopy thickness when the detection distance, canopy density, and canopy thickness range between 0.5and 1.5 m, 1.2 and 1.4, and 0.3and 0.6 m, respectively. The relative error between the estimated value and actual value of the simulated canopy thickness is no higher than 8.8%. To compare our lab results with trees in the field, we measured canopy thickness from three naturally occurring Osmanthus trees ( Osmanthus fragrans Lour). The results showed that the mean relative errors of three Osmanthus trees are 19.2%, 19.4% and 18.8%, respectively. These results can be used to improve measurements for agricultural production that includes both orchards and facilities by providing a reference point for the precise application of variable spraying.

Suggested Citation

  • Huitao Zhou & Weidong Jia & Yong Li & Mingxiong Ou, 2021. "Method for Estimating Canopy Thickness Using Ultrasonic Sensor Technology," Agriculture, MDPI, vol. 11(10), pages 1-15, October.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:1011-:d:657919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/10/1011/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/10/1011/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingxiong Ou & Tianhang Hu & Mingshuo Hu & Shuai Yang & Weidong Jia & Ming Wang & Li Jiang & Xiaowen Wang & Xiang Dong, 2022. "Experiment of Canopy Leaf Area Density Estimation Method Based on Ultrasonic Echo Signal," Agriculture, MDPI, vol. 12(10), pages 1-14, September.
    2. Jianguo Wu & Chengqian Li & Xiaoyong Pan & Xiu Wang & Xueguan Zhao & Yuanyuan Gao & Shuo Yang & Changyuan Zhai, 2023. "Model for Detecting Boom Height Based on an Ultrasonic Sensor for the Whole Growth Cycle of Wheat," Agriculture, MDPI, vol. 14(1), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:1011-:d:657919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.