IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i5p167-d357630.html
   My bibliography  Save this article

The Effect of Plant Water Status on the Chemical Composition of Pistachio Nuts ( Pistacia vera L. Cultivar Bianca)

Author

Listed:
  • Adele Amico Roxas

    (Department of Plant Sciences, University of California, Davis, One Shields Ave., Davis, CA 95616, USA)

  • Giulia Marino

    (Department of Plant Sciences, University of California, Davis, One Shields Ave., Davis, CA 95616, USA)

  • Giuseppe Avellone

    (Department of Molecular and Biomolecular Science and Technology, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy)

  • Tiziano Caruso

    (Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze Ed. 4, 90128 Palermo, Italy)

  • Francesco Paolo Marra

    (Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze Ed. 4, 90128 Palermo, Italy)

Abstract

Pistachio nuts are worldwide appreciated for their chemical and organoleptic profiles. There are several studies on the influence of irrigation on pistachio productivity, whereas there are little available data on the influence on nut quality. In this study we characterized some qualitative traits of pistachio nuts cultivar Bianca in Mediterranean environment and how plant water status affected them. Water status had a positive and significant influence on the chlorophylls content, nuts from less stressed trees showed higher values of chlorophyll a (14.7 mg/100 g) and b (21.1 mg/100 g) compared than more stressed trees (9.3 and 11.5 mg/100 g for a and b, respectively). Solid phase microextraction technique in headspace followed by gas chromatography/mass spectrometry (HS-SPME GC/MS) identified seventeen different compounds with terpenes being the major class of volatiles; the most abundant were α-Pinene (range 26.2–35 μg/g), D-Limonene (2.8–3.3 μg/g), 2-Carene (1.8–3 μg/g) and β-Myrcene (0.6–1.4 μg/g). Overall, we found higher level of terpenes in less stressed trees and for α-Pinene and β-Myrcene differences were significant. The fatty acid composition analysis revealed oleic acid (70.1–71.1%), linoleic acid (13.5–14.4%) and palmitic acid (9.6–9.8%) as the most abundant compounds, but tree water status did not influence their concentration. Overall, the data reported proved that supplemental irrigation contributes to increase pistachio nut quality.

Suggested Citation

  • Adele Amico Roxas & Giulia Marino & Giuseppe Avellone & Tiziano Caruso & Francesco Paolo Marra, 2020. "The Effect of Plant Water Status on the Chemical Composition of Pistachio Nuts ( Pistacia vera L. Cultivar Bianca)," Agriculture, MDPI, vol. 10(5), pages 1-11, May.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:5:p:167-:d:357630
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/5/167/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/5/167/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Memmi, H. & Gijón, M.C. & Couceiro, J.F. & Pérez-López, D., 2016. "Water stress thresholds for regulated deficit irrigation in pistachio trees: Rootstock influence and effects on yield quality," Agricultural Water Management, Elsevier, vol. 164(P1), pages 58-72.
    2. Gijón, M.C. & Guerrero, J. & Couceiro, J.F. & Moriana, A., 2009. "Deficit irrigation without reducing yield or nut splitting in pistachio (Pistacia vera cv Kerman on Pistacia terebinthus L.)," Agricultural Water Management, Elsevier, vol. 96(1), pages 12-22, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galindo, A. & Collado-González, J. & Griñán, I. & Corell, M. & Centeno, A. & Martín-Palomo, M.J. & Girón, I.F. & Rodríguez, P. & Cruz, Z.N. & Memmi, H. & Carbonell-Barrachina, A.A. & Hernández, F. & T, 2018. "Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems," Agricultural Water Management, Elsevier, vol. 202(C), pages 311-324.
    2. Gutschick, Vincent P. & Sheng, Zhuping, 2013. "Control of atmospheric fluxes from a pecan orchard by physiology, meteorology, and canopy structure: Modeling and measurement," Agricultural Water Management, Elsevier, vol. 129(C), pages 200-211.
    3. Sarkar, S. & Nanda, M.K. & Biswas, M. & Mukherjee, A. & Kundu, M., 2009. "Different indices to characterize water use pattern of irrigated cauliflower (Brassica oleracea L. var. botrytis) in a hot sub-humid climate of India," Agricultural Water Management, Elsevier, vol. 96(10), pages 1475-1482, October.
    4. Moriana, A. & Memmi, H. & Centeno, A. & Martín-Palomo, M.J. & Corell, M. & Torrecillas, A. & Pérez-López, D., 2018. "Influence of rootstock on pistachio (Pistacia vera L. cv Kerman) water relations," Agricultural Water Management, Elsevier, vol. 202(C), pages 263-270.
    5. Enrique Barajas & Sara Álvarez & Elena Fernández & Sergio Vélez & José Antonio Rubio & Hugo Martín, 2020. "Sentinel-2 Satellite Imagery for Agronomic and Quality Variability Assessment of Pistachio ( Pistacia vera L.)," Sustainability, MDPI, vol. 12(20), pages 1-12, October.
    6. Mohammadi Mohammadabadi, Akbar & Hosseinifard, Seyed Javad & Sedaghati, Nasser & Nikooei Dastjerdi, Mohammadreza, 2020. "Pistachio (Pistachia vera L.) seedling growth response to irrigation method and volume in Iran," Agricultural Water Management, Elsevier, vol. 240(C).
    7. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    8. Tadros, Maher J. & Al-Mefleh, Naji K. & Othman, Yahia A. & Al-Assaf, Amani, 2021. "Water harvesting techniques for improving soil water content, and morpho-physiology of pistachio trees under rainfed conditions," Agricultural Water Management, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:5:p:167-:d:357630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.