IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i10p483-d431208.html
   My bibliography  Save this article

Mapping Paddy Rice Using Weakly Supervised Long Short-Term Memory Network with Time Series Sentinel Optical and SAR Images

Author

Listed:
  • Mo Wang

    (Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    Key Laboratory of Agricultural Big Data, Ministry of Agriculture and Rural Affairs, Beijing 100081, China)

  • Jing Wang

    (China Center for Information Industry Development, Beijing 100086, China)

  • Li Chen

    (Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    Key Laboratory of Agricultural Big Data, Ministry of Agriculture and Rural Affairs, Beijing 100081, China)

Abstract

Rice is one of the most important staple food sources worldwide. Effective and cheap monitoring of rice planting areas is demanded by many developing countries. This study proposed a weakly supervised paddy rice mapping approach based on long short-term memory (LSTM) network and dynamic time warping (DTW) distance. First, standard temporal synthetic aperture radar (SAR) backscatter profiles for each land cover type were constructed on the basis of a small number of field samples. Weak samples were then labeled on the basis of their DTW distances to the standard temporal profiles. A time series feature set was then created that combined multi-spectral Sentinel-2 bands and Sentinel-1 SAR vertical received (VV) band. With different combinations of training and testing datasets, we trained a specifically designed LSTM classifier and validated the performance of weakly supervised learning. Experiments showed that weakly supervised learning outperformed supervised learning in paddy rice identification when field samples were insufficient. With only 10% of field samples, weakly supervised learning achieved better results in producer’s accuracy (0.981 to 0.904) and user’s accuracy (0.961 to 0.917) for paddy rice. Training with 50% of field samples also presented improvement with weakly supervised learning, although not as prominent. Finally, a paddy rice map was generated with the weakly supervised approach trained on field samples and DTW-labeled samples. The proposed data labeling approach based on DTW distance can reduce field sampling cost since it requires fewer field samples. Meanwhile, validation results indicated that the proposed LSTM classifier is suitable for paddy rice mapping where variance exists in planting and harvesting schedules.

Suggested Citation

  • Mo Wang & Jing Wang & Li Chen, 2020. "Mapping Paddy Rice Using Weakly Supervised Long Short-Term Memory Network with Time Series Sentinel Optical and SAR Images," Agriculture, MDPI, vol. 10(10), pages 1-19, October.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:10:p:483-:d:431208
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/10/483/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/10/483/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quan Xu & Mengting Jin & Peng Guo, 2022. "A High-Precision Crop Classification Method Based on Time-Series UAV Images," Agriculture, MDPI, vol. 13(1), pages 1-18, December.
    2. Chunling Sun & Hong Zhang & Lu Xu & Chao Wang & Liutong Li, 2021. "Rice Mapping Using a BiLSTM-Attention Model from Multitemporal Sentinel-1 Data," Agriculture, MDPI, vol. 11(10), pages 1-20, October.
    3. Sebastian Kujawa & Gniewko Niedbała, 2021. "Artificial Neural Networks in Agriculture," Agriculture, MDPI, vol. 11(6), pages 1-6, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:10:p:483-:d:431208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.