IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i10p444-d421780.html
   My bibliography  Save this article

Nanoparticles as Potential Antivirals in Agriculture

Author

Listed:
  • Marcela Vargas-Hernandez

    (Faculty of Engineering, Campus Amealco, Autonomous University of Queretaro, Carretera Amealco Temazcaltzingo, km 1, Centro, C.P., Amealco de Bonfil, Queretaro 76850, Mexico)

  • Israel Macias-Bobadilla

    (Laboratory of Biosystems Engineering, Faculty of Engineering, Campus Amazcala, Autonomous University of Queretaro, Carretera a Chichimequillas, km 1 S/N, C.P., El Marques, Queretaro 76265, Mexico)

  • Ramon Gerardo Guevara-Gonzalez

    (Laboratory of Biosystems Engineering, Faculty of Engineering, Campus Amazcala, Autonomous University of Queretaro, Carretera a Chichimequillas, km 1 S/N, C.P., El Marques, Queretaro 76265, Mexico)

  • Enrique Rico-Garcia

    (Laboratory of Biosystems Engineering, Faculty of Engineering, Campus Amazcala, Autonomous University of Queretaro, Carretera a Chichimequillas, km 1 S/N, C.P., El Marques, Queretaro 76265, Mexico)

  • Rosalia Virginia Ocampo-Velazquez

    (Laboratory of Biosystems Engineering, Faculty of Engineering, Campus Amazcala, Autonomous University of Queretaro, Carretera a Chichimequillas, km 1 S/N, C.P., El Marques, Queretaro 76265, Mexico)

  • Luciano Avila-Juarez

    (Faculty of Engineering, Campus Amealco, Autonomous University of Queretaro, Carretera Amealco Temazcaltzingo, km 1, Centro, C.P., Amealco de Bonfil, Queretaro 76850, Mexico)

  • Irineo Torres-Pacheco

    (Laboratory of Biosystems Engineering, Faculty of Engineering, Campus Amazcala, Autonomous University of Queretaro, Carretera a Chichimequillas, km 1 S/N, C.P., El Marques, Queretaro 76265, Mexico)

Abstract

Viruses are estimated to be responsible for approximately 50% of the emerging plant diseases, which are difficult to control, and in some cases, there is no cure. It is essential to develop therapy practices to strengthen the management of these diseases caused by viruses in economically important crops. Metal nanoparticles (MeNPs) possess diverse physicochemical properties that allow for them to have a wide range of applications in industry, including nanomedicine and nano-agriculture. Currently, there are reports of favorable effects of the use of nanoparticles, such as antibacterial, antifungal, and antiviral effects, in animals and plants. The potential antiviral property of MeNPs makes them a powerful option for controlling these histological agents. It is crucial to determine the dosage of NPs, the application intervals, their effect as a biostimulant, and the clarification of the mechanisms of action, which are not fully understood. Therefore, this review focuses on discussing the ability of metal nanoparticles and metal oxides to control viruses that affect agriculture through an exhaustive analysis of the characteristics of the particles and their interaction processes for a possibly beneficial effect on plants.

Suggested Citation

  • Marcela Vargas-Hernandez & Israel Macias-Bobadilla & Ramon Gerardo Guevara-Gonzalez & Enrique Rico-Garcia & Rosalia Virginia Ocampo-Velazquez & Luciano Avila-Juarez & Irineo Torres-Pacheco, 2020. "Nanoparticles as Potential Antivirals in Agriculture," Agriculture, MDPI, vol. 10(10), pages 1-18, September.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:10:p:444-:d:421780
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/10/444/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/10/444/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noemi L. Acuña-Fuentes & Marcela Vargas-Hernandez & Samantha de Jesus Rivero-Montejo & Luisa K. Rivas-Ramirez & Israel Macias-Bobadilla & Viviana Palos-Barba & Eric M. Rivera-Muñoz & Ramon G. Guevara-, 2022. "Antiviral Activity of TiO 2 NPs against Tobacco Mosaic Virus in Chili Pepper ( Capsicum annuum L.)," Agriculture, MDPI, vol. 12(12), pages 1-14, December.
    2. Samantha de Jesus Rivero-Montejo & Marcela Vargas-Hernandez & Irineo Torres-Pacheco, 2021. "Nanoparticles as Novel Elicitors to Improve Bioactive Compounds in Plants," Agriculture, MDPI, vol. 11(2), pages 1-16, February.
    3. Manjit Kumar Ray & Awdhesh Kumar Mishra & Yugal Kishore Mohanta & Saurov Mahanta & Ishani Chakrabartty & Neelam Amit Kungwani & Satya Kumar Avula & Jibanjyoti Panda & Ramesh Namdeo Pudake, 2023. "Nanotechnology as a Promising Tool against Phytopathogens: A Futuristic Approach to Agriculture," Agriculture, MDPI, vol. 13(9), pages 1-41, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:10:p:444-:d:421780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.