Author
Listed:
- Gilles Lemaire
(INRA, Centre nouvelle Aquitaine, 86600 Lusignan, France)
- Gilles Belanger
(Agriculture and Agri-Food Canada, Quebec Research and Development Centre, Québec, QC G1V 2J3, Canada)
Abstract
The nutritive value of forage for herbivores has been for a long time determined by the concentration in protein and, hence in nitrogen (N), the concentration in different minerals (P, K, Ca, Mg, and oligo-elements), and the in vivo dry matter (DM) digestibility. Forage DM digestibility, the proportion of ingested DM being metabolized by ruminant animals has been related to different components of plant tissue composition such as Neutral Detergent Fiber (NDF) and Acid Detergent Fiber (ADF); the NDF concentration represents an estimate of cell wall content while the ADF concentration is an estimate of the more lignified cell wall content. Forage nutritive value is generally analyzed by relating the attributes of nutritive value to plant phenology, in order to predict the decline of these attributes with plant age. A more functional approach, initially developed for the analysis of N concentration dynamic analysis (Lemaire et al. 2008 and Lemaire et al. 2019), and extended for digestibility for this review, is based on the assumption that above-ground plant mass (W) is composed of two compartments: (i) the metabolic compartment (Wm), associated with plant growth process scaling with leaf area, having a high N concentration (%N), and a high Digestibility (%D); (ii) the structural compartment (Ws) associated with architectural plant development, scaling with plant height and thickness and having low %N and %D. With the postulate that Wm is allometrically related to W (Wm = c × W α with α < 1), the ontogenetic decline of both %N and %D as the plant gets bigger and forage mass increases can be explained, and the purely empirical statistical approach of forage quality based on plant phenology can be replaced by a more mechanistic and comprehensive analysis linking forage production and forage quality dynamics within the same functional approach for a better understanding of genotype-environment-management interactions.
Suggested Citation
Gilles Lemaire & Gilles Belanger, 2019.
"Allometries in Plants as Drivers of Forage Nutritive Value: A Review,"
Agriculture, MDPI, vol. 10(1), pages 1-17, December.
Handle:
RePEc:gam:jagris:v:10:y:2019:i:1:p:5-:d:301458
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2019:i:1:p:5-:d:301458. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.