IDEAS home Printed from https://ideas.repec.org/a/fzy/fuzeco/vviy2001i2p3-21.html
   My bibliography  Save this article

Evaluation of Fuzzy Rules Extracted from Data

Author

Listed:
  • Schenker, Adam
  • Last, Mark
  • Kandel, Abraham

    (University of South Florida)

Abstract

A general methodology for evaluation of fuzzy rules extracted from data is presented. Though the primary goal of most data mining systems is high classification or prediction accuracy, the user may be interested in rules which are not necessarily the most accurate. Our approach provides an alternative measure of rule validity, based on methods of fuzzy set theory. When the rules to be tested come from a human expert, the method can be viewed as a verification-based data mining method. If the rules are generated by another (discovery-based) data mining method (such as a decision-tree algorithm), the method can be seen as a post-processing step in the KDD process, aimed at evaluating the extracted rules. The method involves four major steps: hypothesis formulation, data selection, hypothesis testing, and decision. In the hypothesis formulation step, a set of fuzzy rules are created using conjunctive antecedents and consequent functions. In the data selection step, a subset of all data in the database is chosen as a sample set. This sample should contain enough records to be representative of the data to a certain degree of user satisfaction. In hypothesis testing, a fuzzy implication is applied to the selected data for each extracted rule and the results are combined using some aggregation function. These results are used in the final step to evaluate the validity of each rule. The presented technique is applied to the rules generated by the C4.5 algorithm from two sample databases. The experimental results demonstrate potential benefits of using validity-based evaluation of rules.

Suggested Citation

  • Schenker, Adam & Last, Mark & Kandel, Abraham, 2001. "Evaluation of Fuzzy Rules Extracted from Data," Fuzzy Economic Review, International Association for Fuzzy-set Management and Economy (SIGEF), vol. 0(2), pages 3-21, November.
  • Handle: RePEc:fzy:fuzeco:v:vi:y:2001:i:2:p:3-21
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    Fuzzy hypothesis testing; fuzzy rule evaluation; data mining; approximate reasoning; sampling;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fzy:fuzeco:v:vi:y:2001:i:2:p:3-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Aurelio Fernandez (email available below). General contact details of provider: https://edirc.repec.org/data/sigefea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.