IDEAS home Printed from https://ideas.repec.org/a/fau/fauart/v62y2012i2p125-140.html
   My bibliography  Save this article

Dynamic Multi-Factor Credit Risk Model with Fat-Tailed Factors

Author

Abstract

The authors introduce an improved multi-factor credit risk model describing simultaneously the default rate and the loss given default. Their methodology is based on the KMV model, which they generalize in three ways. First, they add a model for loss given default (LGD), second, they bring dynamics to the model, and third, they allow non-normal distributions of risk factors. Both the defaults and the LGD are driven by a common factor and an individual factor; the individual factors are mutually independent, but the authors allow any form of dependence of the common factors. They test their model on a nationwide portfolio of US mortgage delinquencies, modeling the dependence of the common factor by a VECM model, and compare their results with the current regulatory framework, which is described in the Basel II Accord.

Suggested Citation

  • Petr Gapko & Martin Smid, 2012. "Dynamic Multi-Factor Credit Risk Model with Fat-Tailed Factors," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 62(2), pages 125-140, May.
  • Handle: RePEc:fau:fauart:v:62:y:2012:i:2:p:125-140
    as

    Download full text from publisher

    File URL: http://journal.fsv.cuni.cz/storage/1243_gapko.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gordy, Michael B., 2000. "A comparative anatomy of credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 119-149, January.
    2. Jon Frye, 2000. "Collateral damage detected," Emerging Issues, Federal Reserve Bank of Chicago, issue Sep.
    3. Andrea Cipollini & Giuseppe Missaglia, 2008. "Measuring bank capital requirements through Dynamic Factor analysis," Center for Economic Research (RECent) 010, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    4. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    5. John M. Quigley, 1999. "Real Estate Prices and Economic Cycles," International Real Estate Review, Global Social Science Institute, vol. 2(1), pages 1-20.
    6. Crouhy, Michel & Galai, Dan & Mark, Robert, 2000. "A comparative analysis of current credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 59-117, January.
    7. repec:czx:journl:v:18:y:2011:i:28:id:183 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petr Gapko & Martin Smid, 2016. "Multi-Period Structural Model of a Mortgage Portfolio with Cointegrated Factors," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(6), pages 565-574, December.
    2. Biase di Giuseppe & Guglielmo D'Amico & Jacques Janssen & Raimondo Manca, 2014. "A Duration Dependent Rating Migration Model: Real Data Application and Cost of Capital Estimation," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(3), pages 233-245, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelkader Derbali & Lamia Jamel, 2019. "Dependence of Default Probability and Recovery Rate in Structural Credit Risk Models: Case of Greek Banks," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(2), pages 711-733, June.
    2. Ming Pu & Gang-Zhi Fan & Chunsheng Ban, 2016. "The Pricing of Mortgage Insurance Premiums Under Systematic and Idiosyncratic Shocks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(2), pages 447-474, June.
    3. Bonfim, Diana, 2009. "Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 281-299, February.
    4. Kern, Markus & Rudolph, Bernd, 2001. "Comparative analysis of alternative credit risk models: An application on German middle market loan portfolios," CFS Working Paper Series 2001/03, Center for Financial Studies (CFS).
    5. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    6. Paul S. Calem & Michael LaCour-Little, 2001. "Risk-based capital requirements for mortgage loans," Finance and Economics Discussion Series 2001-60, Board of Governors of the Federal Reserve System (U.S.).
    7. Bag, Pinaki, 2010. "Exposure at Default Model for Contingent Credit Line," MPRA Paper 20387, University Library of Munich, Germany.
    8. Georges Dionne, 2003. "The Foundationsof Banks' Risk Regulation: A Review of Literature," THEMA Working Papers 2003-46, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    9. Georges Dionne & Sadok Laajimi & Sofiane Mejri & Madalina Petrescu, 2006. "Estimation of the Default Risk of Publicly Traded Canadian Companies," Staff Working Papers 06-28, Bank of Canada.
    10. Hamerle, Alfred & Liebig, Thilo & Rösch, Daniel, 2003. "Credit Risk Factor Modeling and the Basel II IRB Approach," Discussion Paper Series 2: Banking and Financial Studies 2003,02, Deutsche Bundesbank.
    11. Correa, Arnildo & Marins, Jaqueline & Neves, Myrian & da Silva, Antonio Carlos, 2014. "Credit Default and Business Cycles: An Empirical Investigation of Brazilian Retail Loans," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 68(3), September.
    12. Sergio Masciantonio & Andrea Zaghini, 2017. "Systemic risk and systemic importance measures during the crisis," Temi di discussione (Economic working papers) 1153, Bank of Italy, Economic Research and International Relations Area.
    13. Fabrizio Fabi & Sebastiano Laviola & Paolo Marullo Reedtz, 2004. "The treatment of SMEs loans in the New Basel Capital Accord: some evaluations," Banca Nazionale del Lavoro Quarterly Review, Banca Nazionale del Lavoro, vol. 57(228), pages 29-70.
    14. Georges Dionne & Geneviève Gauthier & Khemais Hammami & Mathieu Maurice & Jean‐Guy Simonato, 2010. "Default Risk in Corporate Yield Spreads," Financial Management, Financial Management Association International, vol. 39(2), pages 707-731, June.
    15. Dionne, Georges & Gauthier, Geneviève & Hammami, Khemais & Maurice, Mathieu & Simonato, Jean-Guy, 2011. "A reduced form model of default spreads with Markov-switching macroeconomic factors," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1984-2000, August.
    16. Benedikt Schamberger & Lutz F. Gruber & Claudia Czado, 2017. "Bayesian Inference for Latent Factor Copulas and Application to Financial Risk Forecasting," Econometrics, MDPI, vol. 5(2), pages 1-23, May.
    17. Lopez, Jose A. & Saidenberg, Marc R., 2000. "Evaluating credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 151-165, January.
    18. Castrén, Olli & Fitzpatrick, Trevor & Sydow, Matthias, 2009. "Assessing portfolio credit risk changes in a sample of EU large and complex banking groups in reaction to macroeconomic shocks," Working Paper Series 1002, European Central Bank.
    19. Maldonado, Diego & Pazmiño, Mariela, 2008. "Nuevas Herramientas para la Administración del Riesgo Crediticio: El caso de una Cartera Crediticia Ecuatoriana [New Management Tool for Credit Risk analysis: An aplication for Financial Institutio," MPRA Paper 17163, University Library of Munich, Germany, revised 30 Dec 2008.
    20. Wozabal, David & Hochreiter, Ronald, 2012. "A coupled Markov chain approach to credit risk modeling," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 403-415.

    More about this item

    Keywords

    credit risk; probability of default; loss given default; credit loss; credit loss distribution; Basel II;
    All these keywords.

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:fauart:v:62:y:2012:i:2:p:125-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Natalie Svarcova (email available below). General contact details of provider: https://edirc.repec.org/data/icunicz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.