IDEAS home Printed from https://ideas.repec.org/a/fan/macoma/vhtml10.3280-maco2022-003003.html
   My bibliography  Save this article

Opportunities and risks in using big data to support management control systems: A multiple case study

Author

Listed:
  • Francesco Badia
  • Fabio Donato

Abstract

The growing importance of big data in the current business context is a recognized phenomenon in managerial studies. Many such studies have been focused on possible changes from the use of big data analytics in business, and with reference to management control systems. However, the number and extent of studies attempting to analyze the opportunities and risks of using big data analytics in control systems from an empirical perspective appear rather limited. This work conducts case studies analyzing three companies that have used big data in their decision-making processes within management control systems. The empirical analysis shows how proper management of big data can represent a fundamental opportunity for the development of managerial control systems, with some possibilities not yet fully explored even by those who have already introduced big data analytics in these systems. Big data quality and privacy protection appear to be the profiles presenting the greatest opportunities for future study. Furthermore, new challenges seem to emerge for accountants and controllers, who now are called to a new approach regarding how they should interpret their professional roles.

Suggested Citation

  • Francesco Badia & Fabio Donato, 2022. "Opportunities and risks in using big data to support management control systems: A multiple case study," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(3), pages 39-63.
  • Handle: RePEc:fan:macoma:v:html10.3280/maco2022-003003
    as

    Download full text from publisher

    File URL: http://www.francoangeli.it/riviste/Scheda_Rivista.aspx?IDArticolo=72103&Tipo=ArticoloPDF
    Download Restriction: Single articles can be downloaded buying download credits, for info: https://www.francoangeli.it/DownloadCredit
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Franco Visani, 2017. "Applying business analytics for performance measurement and management. The case study of a software company," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2017(2), pages 89-123.
    2. Aykroyd, Robert G. & Leiva, Víctor & Ruggeri, Fabrizio, 2019. "Recent developments of control charts, identification of big data sources and future trends of current research," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 221-232.
    3. Sandy Q. Qu & John Dumay, 2011. "The qualitative research interview," Qualitative Research in Accounting & Management, Emerald Group Publishing Limited, vol. 8(3), pages 238-264, August.
    4. Sivarajah, Uthayasankar & Kamal, Muhammad Mustafa & Irani, Zahir & Weerakkody, Vishanth, 2017. "Critical analysis of Big Data challenges and analytical methods," Journal of Business Research, Elsevier, vol. 70(C), pages 263-286.
    5. Marco Montemari & Christian Nielsen, 2021. "Big data for business modeling: Towards the next generation of performance measurement systems?," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2021(suppl. 1), pages 5-10.
    6. Gunasekaran, Angappa & Papadopoulos, Thanos & Dubey, Rameshwar & Wamba, Samuel Fosso & Childe, Stephen J. & Hazen, Benjamin & Akter, Shahriar, 2017. "Big data and predictive analytics for supply chain and organizational performance," Journal of Business Research, Elsevier, vol. 70(C), pages 308-317.
    7. Erevelles, Sunil & Fukawa, Nobuyuki & Swayne, Linda, 2016. "Big Data consumer analytics and the transformation of marketing," Journal of Business Research, Elsevier, vol. 69(2), pages 897-904.
    8. Grazia Dicuonzo & Francesca Donofrio & Antonio Fusco & Vittorio Dell?Atti, 2021. "Big data and artificial intelligence for health system sustainability: The case of Veneto Region," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2021(suppl. 1), pages 31-52.
    9. Fosso Wamba, Samuel & Akter, Shahriar & Edwards, Andrew & Chopin, Geoffrey & Gnanzou, Denis, 2015. "How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study," International Journal of Production Economics, Elsevier, vol. 165(C), pages 234-246.
    10. Janssen, Marijn & van der Voort, Haiko & Wahyudi, Agung, 2017. "Factors influencing big data decision-making quality," Journal of Business Research, Elsevier, vol. 70(C), pages 338-345.
    11. Ghasemaghaei, Maryam & Calic, Goran, 2020. "Assessing the impact of big data on firm innovation performance: Big data is not always better data," Journal of Business Research, Elsevier, vol. 108(C), pages 147-162.
    12. Akter, Shahriar & Wamba, Samuel Fosso & Gunasekaran, Angappa & Dubey, Rameshwar & Childe, Stephen J., 2016. "How to improve firm performance using big data analytics capability and business strategy alignment?," International Journal of Production Economics, Elsevier, vol. 182(C), pages 113-131.
    13. Mikalef, Patrick & Boura, Maria & Lekakos, George & Krogstie, John, 2019. "Big data analytics and firm performance: Findings from a mixed-method approach," Journal of Business Research, Elsevier, vol. 98(C), pages 261-276.
    14. Hazen, Benjamin T. & Boone, Christopher A. & Ezell, Jeremy D. & Jones-Farmer, L. Allison, 2014. "Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications," International Journal of Production Economics, Elsevier, vol. 154(C), pages 72-80.
    15. Gianluca Vitale & Sebastiano Cupertino & Angelo Riccaboni, 2020. "Big data and management control systems change: the case of an agricultural SME," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 31(1), pages 123-152, April.
    16. Roy-Ivar Andreassen, 2020. "Digital technology and changing roles: a management accountant’s dream or nightmare?," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 31(3), pages 209-238, September.
    17. Arianna Petrosino & Daniela Mancini & Stefano Garzella & Rita Lamboglia, 2018. "La Business Intelligence e la Business Analytics nell?era dei Big Data: una analisi della letteratura," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2018(3), pages 31-58.
    18. Andrea Cappelli & Iacopo Cavallini, 2021. "The Potential of Big Data Analysis in the Shipbuilding Industry: A Way of Increasing Competitiveness," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2021(suppl. 1), pages 53-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guido Noto & Carmelo Marisca & Gustavo Barresi, 2023. "I "pacchetti" di controllo manageriale nei team virtuali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2023(3), pages 43-62.
    2. Diego Valentinetti & Michele A. Reaa, 2023. "Intelligenza artificiale e accounting: le possibili relazioni," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2023(2), pages 93-116.
    3. Fabio Nappo & Alessandra Lardo & Maria Teresa Bianchi & Federico Schimperna, 2023. "The impact of digitalisation on professional football clubs," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2023(2), pages 117-136.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheng, Jie & Amankwah-Amoah, Joseph & Wang, Xiaojun, 2017. "A multidisciplinary perspective of big data in management research," International Journal of Production Economics, Elsevier, vol. 191(C), pages 97-112.
    2. Brinch, Morten & Gunasekaran, Angappa & Fosso Wamba, Samuel, 2021. "Firm-level capabilities towards big data value creation," Journal of Business Research, Elsevier, vol. 131(C), pages 539-548.
    3. Sun, Pengfei & Yuan, Chunhui & Li, Xiaolong & Di, Jia, 2024. "Big data analytics, firm risk and corporate policies: Evidence from China," Research in International Business and Finance, Elsevier, vol. 70(PB).
    4. Ghasemaghaei, Maryam & Calic, Goran, 2020. "Assessing the impact of big data on firm innovation performance: Big data is not always better data," Journal of Business Research, Elsevier, vol. 108(C), pages 147-162.
    5. Ghasemaghaei, Maryam & Calic, Goran, 2019. "Does big data enhance firm innovation competency? The mediating role of data-driven insights," Journal of Business Research, Elsevier, vol. 104(C), pages 69-84.
    6. Acciarini, Chiara & Cappa, Francesco & Boccardelli, Paolo & Oriani, Raffaele, 2023. "How can organizations leverage big data to innovate their business models? A systematic literature review," Technovation, Elsevier, vol. 123(C).
    7. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    8. S. Vijayakumar Bharathi, 2017. "Prioritizing and Ranking the Big Data Information Security Risk Spectrum," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 183-201, September.
    9. Liedong, Tahiru Azaaviele & Rajwani, Tazeeb & Lawton, Thomas C., 2020. "Information and nonmarket strategy: Conceptualizing the interrelationship between big data and corporate political activity," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    10. Alberto Bertello & Alberto Ferraris & Stefano Bresciani & Paola Bernardi, 2021. "Big data analytics (BDA) and degree of internationalization: the interplay between governance of BDA infrastructure and BDA capabilities," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 25(4), pages 1035-1055, December.
    11. Candice WALLS & Brian BARNARD, 2020. "Success Factors of Big Data to Achieve Organisational Performance: Theoretical Perspectives," Expert Journal of Business and Management, Sprint Investify, vol. 8(1), pages 1-16.
    12. Korayim, Diana & Chotia, Varun & Jain, Girish & Hassan, Sharfa & Paolone, Francesco, 2024. "How big data analytics can create competitive advantage in high-stake decision forecasting? The mediating role of organizational innovation," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    13. Mariani, Marcello M. & Fosso Wamba, Samuel, 2020. "Exploring how consumer goods companies innovate in the digital age: The role of big data analytics companies," Journal of Business Research, Elsevier, vol. 121(C), pages 338-352.
    14. Mohammad Ali Yamin, 2021. "Investigating the Drivers of Supply Chain Resilience in the Wake of the COVID-19 Pandemic: Empirical Evidence from an Emerging Economy," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    15. Pan Liu & Shu-ping Yi, 2018. "Investment decision-making and coordination of a three-stage supply chain considering Data Company in the Big Data era," Annals of Operations Research, Springer, vol. 270(1), pages 255-271, November.
    16. Claudio Vitari & Elisabetta Raguseo, 2019. "Big data analytics business value and firm performance: Linking with environmental context," Post-Print hal-02293765, HAL.
    17. Roßmann, Bernhard & Canzaniello, Angelo & von der Gracht, Heiko & Hartmann, Evi, 2018. "The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 135-149.
    18. Morimura, Fumikazu & Sakagawa, Yuji, 2023. "The intermediating role of big data analytics capability between responsive and proactive market orientations and firm performance in the retail industry," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).
    19. Ashrafi, Amir & Zare Ravasan, Ahad & Trkman, Peter & Afshari, Samira, 2019. "The role of business analytics capabilities in bolstering firms’ agility and performance," International Journal of Information Management, Elsevier, vol. 47(C), pages 1-15.
    20. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Papadopoulos, Thanos & Luo, Zongwei & Wamba, Samuel Fosso & Roubaud, David, 2019. "Can big data and predictive analytics improve social and environmental sustainability?," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 534-545.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fan:macoma:v:html10.3280/maco2022-003003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefania Rosato (email available below). General contact details of provider: http://www.francoangeli.it/riviste/sommario.aspx?IDRivista=166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.