IDEAS home Printed from https://ideas.repec.org/a/exp/econcs/v6y2018i1p26-34.html
   My bibliography  Save this article

Portfolio Optimization. Application of the Markowitz Model Using Lagrange and Profitability Forecast

Author

Listed:
  • Vasile BRÄ‚TIAN

    (Lucian Blaga University Sibiu, Romania)

Abstract

This paper presents the theoretical and applicative model elaborated by Harry Markowitz on the determination of the structure of the efficient securities portfolio. In this sense, in order to determine the structure of the efficient Markowitz portfolio (PE), a Lagrange function is built and minimized. Also, on the basis of the results obtained from the analysis, the profitability of the portfolio is modeled continuous time and determines the range of values in which it can be found over one year after the analysis period. The data used in our analysis are shares of financial investment companies (SIF), traded on the Bucharest Stock Exchange, and the distribution used in the analysis is lognormal. The structure of the portfolio obtained through the Markowitz model can be compared to the structure of the portfolio obtained through the Sharpe model from a previous article titled †Portfolio optimization - application of Sharpe model using Lagrange†(Brătian, 2017).

Suggested Citation

  • Vasile BRÄ‚TIAN, 2018. "Portfolio Optimization. Application of the Markowitz Model Using Lagrange and Profitability Forecast," Expert Journal of Economics, Sprint Investify, vol. 6(1), pages 26-34.
  • Handle: RePEc:exp:econcs:v:6:y:2018:i:1:p:26-34
    as

    Download full text from publisher

    File URL: http://economics.expertjournals.com/ark:/16759/EJE_603bratian26-34.pdf
    Download Restriction: no

    File URL: http://economics.expertjournals.com/23597704-603
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
    2. Marshall L. Fisher, 2004. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 50(12_supple), pages 1861-1871, December.
    3. Mark Rubinstein, 2002. "Markowitz's “Portfolio Selection”: A Fifty‐Year Retrospective," Journal of Finance, American Finance Association, vol. 57(3), pages 1041-1045, June.
    4. Edwin J. Elton & Martin J. Gruber, 1997. "Modern Portfolio Theory, 1950 to Date," New York University, Leonard N. Stern School Finance Department Working Paper Seires 97-3, New York University, Leonard N. Stern School of Business-.
    5. Elton, Edwin J. & Gruber, Martin J., 1997. "Modern portfolio theory, 1950 to date," Journal of Banking & Finance, Elsevier, vol. 21(11-12), pages 1743-1759, December.
    6. Marshall L. Fisher, 2004. "Comments on ÜThe Lagrangian Relaxation Method for Solving Integer Programming ProblemsÝ," Management Science, INFORMS, vol. 50(12_supple), pages 1872-1874, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. BRATIAN Vasile, 2017. "Portfolio Optimization - Application Of Sharpe Model Using Lagrange," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 69(5), pages 8-21, December.
    2. Jitka Janová, 2012. "Crop planning optimization model: the validation and verification processes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(3), pages 451-462, September.
    3. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    4. Christoph Wegener & Tobias Basse, 2019. "The Stability of Factor Sensitivities of German Stock Market Sector Indices: Empirical Evidence and Some Thoughts about Practical Implications," JRFM, MDPI, vol. 12(3), pages 1-10, August.
    5. Hyeong Kyu Choi, 2018. "Stock Price Correlation Coefficient Prediction with ARIMA-LSTM Hybrid Model," Papers 1808.01560, arXiv.org, revised Oct 2018.
    6. Yanling Chu & Xiaoju Zhang & Zhongzhen Yang, 2017. "Multiple quay cranes scheduling for double cycling in container terminals," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
    7. An, Yu & Zhang, Yu & Zeng, Bo, 2015. "The reliable hub-and-spoke design problem: Models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 103-122.
    8. Dollevoet, Twan & van Essen, J. Theresia & Glorie, Kristiaan M., 2018. "Solution methods for the tray optimization problem," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1070-1084.
    9. Alexandre Belloni & Mitchell J. Lovett & William Boulding & Richard Staelin, 2012. "Optimal Admission and Scholarship Decisions: Choosing Customized Marketing Offers to Attract a Desirable Mix of Customers," Marketing Science, INFORMS, vol. 31(4), pages 621-636, July.
    10. Zhizhu Lai & Qun Yue & Zheng Wang & Dongmei Ge & Yulong Chen & Zhihong Zhou, 2022. "The min-p robust optimization approach for facility location problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1134-1160, September.
    11. Adam Karp & Gary Van Vuuren, 2019. "Investment Implications Of The Fractal Market Hypothesis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-27, March.
    12. Yokoya, Daisuke & Duin, Cees W. & Yamada, Takeo, 2011. "A reduction approach to the repeated assignment problem," European Journal of Operational Research, Elsevier, vol. 210(2), pages 185-193, April.
    13. Zhang, Zheng & Wei, Yongqi & Xiong, Youming & Peng, Geng & Wang, Guorong & Lu, Jingsheng & Zhong, Lin & Wang, Jingpeng, 2022. "Influence of the location of drilling fluid loss on wellbore temperature distribution during drilling," Energy, Elsevier, vol. 244(PB).
    14. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing & Moghadam, Hani Shahmoradi, 2016. "Designing a supply chain resilient to major disruptions and supply/demand interruptions," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 121-149.
    15. Samuel Tabot Enow, 2022. "Overreaction And Underreaction During The Covid-19 Pandemic In The South African Stock Market And Its Implications," Eurasian Journal of Business and Management, Eurasian Publications, vol. 10(1), pages 19-26.
    16. Pattitoni, Pierpaolo & Savioli, Marco, 2011. "Investment choices: Indivisible non-marketable assets and suboptimal solutions," Economic Modelling, Elsevier, vol. 28(6), pages 2387-2394.
    17. Junming Liu & Weiwei Chen & Jingyuan Yang & Hui Xiong & Can Chen, 2022. "Iterative Prediction-and-Optimization for E-Logistics Distribution Network Design," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 769-789, March.
    18. Springborn, Michael R., 2014. "Risk aversion and adaptive management: Insights from a multi-armed bandit model of invasive species risk," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 226-242.
    19. Li, Wenjie & Yang, Lixing & Wang, Li & Zhou, Xuesong & Liu, Ronghui & Gao, Ziyou, 2017. "Eco-reliable path finding in time-variant and stochastic networks," Energy, Elsevier, vol. 121(C), pages 372-387.
    20. Gregory Price & Warren Whatley, 2021. "Did profitable slave trading enable the expansion of empire?: The Asiento de Negros, the South Sea Company and the financial revolution in Great Britain," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 15(3), pages 675-718, September.

    More about this item

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:exp:econcs:v:6:y:2018:i:1:p:26-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alin Opreana (email available below). General contact details of provider: https://economics.expertjournals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.