Author
Abstract
Purpose - Recognizing the importance of Robo-advisors in digital financial services, this paper aims to analyse the users’ perception and acceptability of artificial intelligence (AI) in digital investment solutions using an extended “Technology Acceptance Model” (TAM). Design/methodology/approach - The model is tested using 454 online valid responses received from Indian Fintech users via direct path analysis, mediation and moderation. Findings - The study’s findings show that trust, perceived usefulness and perceived risk all significantly impact users’ attitudes towards Robo-advisors. In contrast, ease of use and social influence did not impact users’ attitudes statistically. Furthermore, the results indicate that their attitudes and ease of use influence users’ intentions to adopt Robo-advisors. Moreover, the moderation effect of gender partly supports the overall model. Specifically, in the path between attitudes and their antecedents, gender plays a role in influencing the relationships among these variables. This aligns with preliminary research in the field, providing additional insight into how gender may moderate the factors influencing users’ attitudes and intentions regarding Robo-advisory services. Research limitations/implications - This research study also reveals that trust, perceived risk, ease of use and demographic factors influence the adoption of Robo-advisory services. It is functional, but its sample selection is not probabilistic and overly emphasizes gender. Future research should use probabilistic sampling, other demographic factors and experience and situational factors. Also, it is necessary to examine how convenient and satisfying it is to communicate with service providers. Filling these gaps will improve the knowledge of consumer behaviour in the context of Fintech adoption and develop the current research. Practical implications - This study posits that perceived usefulness, trust, perceived risk and ease of use remain core determinants of adopting Robo-advisory services. So, to improve the level of trust of users, it is necessary to develop security measures, data clarity and quality and customer support. Enhancing ease of use by incorporating better interface gestures is always beneficial for increasing the number of users and their level of satisfaction. As identified in previous studies, practical solutions will be achieved by pursuing the increased use of technology while leveraging AI for personal services and minimizing perceived risks, which will strengthen more advanced security measures as well as sufficiently clear communication. Originality/value - The paper aims to extend the TAM by incorporating measures of trust and social influence to identify the factors that drive the adoption of Robo-advisors. In doing so, the paper may contribute to developing a more comprehensive understanding of the factors that shape consumers’ attitudes and intentions towards these technologies. Moreover, the paper appears to examine the moderating effect of gender on attitude and its predictors, which could provide insights into how gender characteristics may impact the adoption of Robo-advisors.
Suggested Citation
Sandeep Singh & Atul Kumar, 2024.
"Investing in the future: an integrated model for analysing user attitudes towards Robo-advisory services with AI integration,"
Vilakshan - XIMB Journal of Management, Emerald Group Publishing Limited, vol. 22(1), pages 158-175, September.
Handle:
RePEc:eme:xjmpps:xjm-03-2024-0046
DOI: 10.1108/XJM-03-2024-0046
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:xjmpps:xjm-03-2024-0046. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.