IDEAS home Printed from https://ideas.repec.org/a/eme/sefpps/sef-03-2016-0061.html
   My bibliography  Save this article

Value-at-risk and expected shortfall using the unbiased extreme value volatility estimator

Author

Listed:
  • Dilip Kumar
  • Srinivasan Maheswaran

Abstract

Purpose - This paper aims to propose a framework based on the unbiased extreme value volatility estimator (namely, the AddRS estimator) to compute and predict the long position and the short position value-at-risk (VaR) and stressed expected shortfall (ES). The precise prediction of VaR and ES measures has important implications toward financial institutions, fund managers, portfolio managers, regulators and business practitioners. Design/methodology/approach - The proposed framework is based on the Giot and Laurent (2004) approach and incorporates characteristics like long memory, fat tails and skewness. The authors evaluate its VaR and ES forecasting performance using various backtesting approaches for both long and short positions on four global indices (S&P 500, CAC 40, Indice BOVESPA [IBOVESPA] and S&P CNX Nifty) and compare the results with that of various alternative models. Findings - The findings indicate that the proposed framework outperforms the alternative models in predicting the long and the short position VaR and stressed ES. The findings also indicate that the VaR forecasts based on the proposed framework provide the least total loss for various long and short position VaR, and this supports the superior properties of the proposed framework in forecasting VaR more accurately. Originality/value - The study contributes by providing a framework to predict more accurate VaR and stressed ES measures based on the unbiased extreme value volatility estimator.

Suggested Citation

  • Dilip Kumar & Srinivasan Maheswaran, 2017. "Value-at-risk and expected shortfall using the unbiased extreme value volatility estimator," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 34(4), pages 506-526, October.
  • Handle: RePEc:eme:sefpps:sef-03-2016-0061
    DOI: 10.1108/SEF-03-2016-0061
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/SEF-03-2016-0061/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/SEF-03-2016-0061/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/SEF-03-2016-0061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Risk management; Extreme value volatility estimator; Skewed Student t distribution; Stressed expected shortfall; Value-at-risk; C22; C53; C53;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:sefpps:sef-03-2016-0061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.