Author
Listed:
- I. Putu Sukma Hendrawan
- Cynthia Afriani Utama
Abstract
Purpose - This study aims to investigate the impact of facial-based perceived trustworthiness on stock valuation, particularly, in the initial public offering (IPO). IPO settings provide the opportunity to investigate whether information asymmetry resulting from company newness in the market would influence the incorporation of soft information in the form of executive facial trustworthiness in stock valuation. Design/methodology/approach - We use a recent machine learning algorithm to detect facial landmarks and then calculate a composite facial trustworthiness measure using several facial features that have previously been observed in neuroscience and psychological studies to be the most determining factor of perceived trustworthiness. We then regress the facial trustworthiness of IPO firm executives to IPO underpricing. Findings - Utilizing machine learning algorithms, we find that the facial trustworthiness of the company executive negatively impacts the extent of IPO underpricing. This result implies that investors incorporate the facial trustworthiness of company executives into stock valuation. The IPO underpricing also shows that the cost of equity is higher when perceived trustworthiness is low. With regard to the higher information asymmetry in IPO transactions, such a negative impact implies the role of facial trustworthiness in alleviating information asymmetry. Originality/value - This study provides evidence of the impact of top management personal characteristics on firms’ financial transactions in the Indonesian context. From the perspective of investors and other fund providers, this study shows evidence that heuristics still play an important role in financial decision-making. This is also an indication of investor reliance on soft information. Our research method also provides a new opportunity for the use of machine-learning algorithms in processing non-conventional types of data in finance research, which is still relatively rare in emerging markets like Indonesia. To the best of our knowledge, our study is the first to use personalized measures of trust generated through machine-learning algorithms in IPO settings in Indonesia.
Suggested Citation
I. Putu Sukma Hendrawan & Cynthia Afriani Utama, 2024.
"Do executive facial trustworthiness have impact on IPO underpricing in the Indonesia stock exchange?,"
Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 16(6), pages 1059-1086, August.
Handle:
RePEc:eme:rbfpps:rbf-12-2023-0327
DOI: 10.1108/RBF-12-2023-0327
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:rbfpps:rbf-12-2023-0327. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.