Author
Abstract
Purpose - This paper examines the relationship between volatility, sentiment and returns in terms of levels and changes for both lower and higher data frequencies using quantile regression (QR) method. Design/methodology/approach - In the first step, the study applies the Granger causality test to understand the causal relationship between realized volatility, returns and sentiment as levels and changes. In the second step, the study employs a QR method to investigate whether investor sentiment and returns can predict realized volatility. This regression method gives robust results irrespective of distributional assumptions and to outliers in the dependent variable. Findings - Empirical results show that the VIX volatility index is a better fear gauge of market-wide investors' sentiments and has a predictive power for future realized volatility in terms of levels and changes for both higher and lower data frequencies. This study provides evidence that the relationship between realized volatility, investor sentiment and returns, respectively, is not symmetric for all quantiles of QR, as opposed to OLS regression. Furthermore, this work supports the behavioral theory beyond leverage hypothesis in explaining the asymmetric relation between returns and volatility at higher and lower data frequencies. Originality/value - This paper adds to the limited understanding of investor sentiment’s impact on volatility by proposing a QR model which provides a more complete picture of the relationship at all parts of the volatility distribution for both higher and lower data frequencies and in terms of levels and changes. To the author knowledge, this is the first paper to study the volatility responses to positive and negative sentiment changes for developed market and to use both lower and higher data frequencies as well as data in terms of levels and changes.
Suggested Citation
Wafa Abdelmalek, 2021.
"Investor sentiment, realized volatility and stock returns,"
Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 14(5), pages 668-700, June.
Handle:
RePEc:eme:rbfpps:rbf-12-2020-0301
DOI: 10.1108/RBF-12-2020-0301
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:rbfpps:rbf-12-2020-0301. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.