IDEAS home Printed from https://ideas.repec.org/a/eme/rbfpps/rbf-07-2023-0172.html
   My bibliography  Save this article

Behavioral biases of cryptocurrency investors: a prospect theory model to explain cryptocurrency returns

Author

Listed:
  • Manisha Yadav

Abstract

Purpose - The study aims to test prospect theory (PT) predictions in the cryptocurrency (CC) market. It proposes a new asset pricing model that explores the potential of prospect theory value (PTV) as a significant predictor of CC returns. Design/methodology/approach - The study comprehensively analyses a large sample set of 1,629 CCs, representing more than 95% of the CC market. The study uses a portfolio analysis approach, employing univariate and bivariate sorting techniques with equal-weighted and value-weighted portfolios. The study also employs ordinary least squares (OLS) regression, panel data methods and quantile regression (QR) to estimate the models. Findings - This study demonstrates an average inverse relationship between PTV and CC returns. However, this relationship exhibits asymmetry across different quantiles, indicating that investor reactions vary based on market conditions. Moreover, PTV provides more robust predictions for smaller CCs characterized by high volatility and illiquidity. Notably, the findings highlight the dominant role of the probability weighting (PW) component in PT for predicting CC behaviors, suggesting a preference for lottery-like characteristics among CC investors. Originality/value - The study is one of the early studies on CC price dynamics from the PT perspective. The study is the first to apply a QR approach to analyze the cross-section of CCs using a PT-based asset pricing model. The results shed light on CC investors' decision-making processes and risk perception, offering valuable insights to regulators, policymakers and market participants. From a practical perspective, a trading strategy centered around the PTV effect can be implemented.

Suggested Citation

  • Manisha Yadav, 2024. "Behavioral biases of cryptocurrency investors: a prospect theory model to explain cryptocurrency returns," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 16(4), pages 643-667, January.
  • Handle: RePEc:eme:rbfpps:rbf-07-2023-0172
    DOI: 10.1108/RBF-07-2023-0172
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/RBF-07-2023-0172/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/RBF-07-2023-0172/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/RBF-07-2023-0172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Asset pricing model; Behavioral biases; Cryptocurrency; Prospect theory; Quantile regression; C33; G11; G12; G41;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:rbfpps:rbf-07-2023-0172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.