IDEAS home Printed from https://ideas.repec.org/a/eme/rbfpps/rbf-05-2023-0121.html
   My bibliography  Save this article

Investigation of herding behavior using machine learning models

Author

Listed:
  • Muhammad Asim
  • Muhammad Yar Khan
  • Khuram Shafi

Abstract

Purpose - The study aims to investigate the presence of herding behavior in the stock market of UK with a special emphasis on news sentiment regarding the economy. The authors focus on the news sentiment because in the current digital era, investors take their decision making on the basis of current trends projected by news and media platforms. Design/methodology/approach - For empirical modeling, the authors use machine learning models to investigate the presence of herding behavior in UK stock market for the period starting from 2006 to 2021. The authors use support vector regression, single layer neural network and multilayer neural network models to predict the herding behavior in the stock market of the UK. The authors estimate the herding coefficients using all the models and compare the findings with the linear regression model. Findings - The results show a strong evidence of herding behavior in the stock market of the UK during different time regimes. Furthermore, when the authors incorporate the economic uncertainty news sentiment in the model, the results show a significant improvement. The results of support vector regression, single layer perceptron and multilayer perceptron model show the evidence of herding behavior in UK stock market during global financial crises of 2007–08 and COVID’19 period. In addition, the authors compare the findings with the linear regression which provides no evidence of herding behavior in all the regimes except COVID’19. The results also provide deep insights for both individual investors and policy makers to construct efficient portfolios and avoid market crashes, respectively. Originality/value - In the existing literature of herding behavior, news sentiment regarding economic uncertainty has not been used before. However, in the present era this parameter is quite critical in context of market anomalies hence and needs to be investigated. In addition, the literature exhibits varying results about the existence of herding behavior when different methodologies are used. In this context, the use of machine learning models is quite rare in the herding literature. The machine learning models are quite robust and provide accurate results. Therefore, this research study uses three different models, i.e. single layer perceptron model, multilayer perceptron model and support vector regression model to investigate the herding behavior in the stock market of the UK. A comparative analysis is also presented among the results of all the models. The study sheds light on the importance of economic uncertainty news sentiment to predict the herding behavior.

Suggested Citation

  • Muhammad Asim & Muhammad Yar Khan & Khuram Shafi, 2023. "Investigation of herding behavior using machine learning models," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 16(3), pages 424-438, November.
  • Handle: RePEc:eme:rbfpps:rbf-05-2023-0121
    DOI: 10.1108/RBF-05-2023-0121
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/RBF-05-2023-0121/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/RBF-05-2023-0121/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/RBF-05-2023-0121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Behavioural finance; Herding behaviour; Machine learning; C22; C58; G01; G15; G41;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G01 - Financial Economics - - General - - - Financial Crises
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:rbfpps:rbf-05-2023-0121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.