IDEAS home Printed from https://ideas.repec.org/a/eme/mscrap/mscra-02-2023-0009.html
   My bibliography  Save this article

Inventory control strategy: based on demand forecast error

Author

Listed:
  • Yue Zhou
  • Xiaobei Shen
  • Yugang Yu

Abstract

Purpose - This study examines the relationship between demand forecasting error and retail inventory management in an uncertain supplier yield context. Replenishment is segmented into off-season and peak-season, with the former characterized by longer lead times and higher supply uncertainty. In contrast, the latter incurs higher acquisition costs but ensures certain supply, with the retailer's purchase volume aligning with the acquired volume. Retailers can replenish in both phases, receiving goods before the sales season. This paper focuses on the impact of the retailer's demand forecasting bias on their sales period profits for both phases. Design/methodology/approach - This study adopts a data-driven research approach by drawing inspiration from real data provided by a cooperating enterprise to address research problems. Mathematical modeling is employed to solve the problems, and the resulting optimal strategies are tested and validated in real-world scenarios. Furthermore, the applicability of the optimal strategies is enhanced by incorporating numerical simulations under other general distributions. Findings - The study's findings reveal that a greater disparity between predicted and actual demand distributions can significantly reduce the profits that a retailer-supplier system can earn, with the optimal purchase volume also being affected. Moreover, the paper shows that the mean of the forecasting error has a more substantial impact on system revenue than the variance of the forecasting error. Specifically, the larger the absolute difference between the predicted and actual means, the lower the system revenue. As a result, managers should focus on improving the quality of demand forecasting, especially the accuracy of mean forecasting, when making replenishment decisions. Practical implications - This study established a two-stage inventory optimization model that simultaneously considers random yield and demand forecast quality, and provides explicit expressions for optimal strategies under two specific demand distributions. Furthermore, the authors focused on how forecast error affects the optimal inventory strategy and obtained interesting properties of the optimal solution. In particular, the property that the optimal procurement quantity no longer changes with increasing forecast error under certain conditions is noteworthy, and has not been previously noted by scholars. Therefore, the study fills a gap in the literature. Originality/value - This study established a two-stage inventory optimization model that simultaneously considers random yield and demand forecast quality, and provides explicit expressions for optimal strategies under two specific demand distributions. Furthermore, the authors focused on how forecast error affects the optimal inventory strategy and obtained interesting properties of the optimal solution. In particular, the property that the optimal procurement quantity no longer changes with increasing forecast error under certain conditions is noteworthy, and has not been previously noted by scholars. Therefore, the study fills a gap in the literature.

Suggested Citation

  • Yue Zhou & Xiaobei Shen & Yugang Yu, 2023. "Inventory control strategy: based on demand forecast error," Modern Supply Chain Research and Applications, Emerald Group Publishing Limited, vol. 5(2), pages 74-101, August.
  • Handle: RePEc:eme:mscrap:mscra-02-2023-0009
    DOI: 10.1108/MSCRA-02-2023-0009
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/MSCRA-02-2023-0009/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/MSCRA-02-2023-0009/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://libkey.io/10.1108/MSCRA-02-2023-0009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:mscrap:mscra-02-2023-0009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.