IDEAS home Printed from https://ideas.repec.org/a/eme/majpps/02686901311329900.html
   My bibliography  Save this article

Loan defaults and hazard models for bankruptcy prediction

Author

Listed:
  • Benjamin P. Foster
  • Jozef Zurada

Abstract

Purpose - Recent bankruptcy research uses hazard models and extensive samples of companies. The large samples used have precluded the inclusion of a variable related to companies' loan default status in the models. With a sample limited to financially distressed companies, the authors aim to examine if results differ when loan default status and/or audit opinion variables are omitted from hazard bankruptcy prediction models. Design/methodology/approach - The sampling frame is publicly traded US companies, consisting of 111 bankrupt and 310 matching companies from 2003 to 2007. The study applies logistic regression to choose variables for parsimonious bankruptcy prediction models to validate hypotheses. Loan default status and/or audit opinion variables are included as potential predictive variables along with variables included in previous hazard bankruptcy prediction models. Findings - Results reveal that loan default and audit opinion variables: improve the predictive accuracy for financially distressed samples with hazard model characteristics; and change the significance on some variables included in previous hazard models. Research limitations/implications - Auditors' propensity to issue going‐concern modifications varies over time. To allow manual collection of loan default status information, the authors' sample was limited. Consequently, their results may not be generalizable to other bankruptcy hazard models. Practical implications - Results from hazard models that do not include loan default status or auditor opinion variables should be interpreted with caution. Auditors might improve their going‐concern modification decisions by attributing more importance to loan default status. Also, the auditor's opinion adds incremental bankruptcy risk information to lenders and investors. Originality/value - Recent bankruptcy research uses hazard models and extensive samples of companies. However, these studies omit a potentially important variable available to financial statement users, loan default status. The authors demonstrate that including variables for loan default status and auditor's opinion improves bankruptcy prediction models and can change conclusions drawn about other variables.

Suggested Citation

  • Benjamin P. Foster & Jozef Zurada, 2013. "Loan defaults and hazard models for bankruptcy prediction," Managerial Auditing Journal, Emerald Group Publishing Limited, vol. 28(6), pages 516-541, June.
  • Handle: RePEc:eme:majpps:02686901311329900
    DOI: 10.1108/02686901311329900
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/02686901311329900/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/02686901311329900/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/02686901311329900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daisuke Tsuruta, 2023. "Do small businesses adjust their capital structure? Evidence from the global financial crisis in Japan," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(S1), pages 843-871, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:majpps:02686901311329900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.