Author
Listed:
- Ngoc Quynh Anh Nguyen
- Thi Ngoc Trang Nguyen
Abstract
Purpose - The purpose of this paper is to present the method for efficient computation of risk measures using Fourier transform technique. Another objective is to demonstrate that this technique enables an efficient computation of risk measures beyond value-at-risk and expected shortfall. Finally, this paper highlights the importance of validating assumptions behind the risk model and describes its application in the affine model framework. Design/methodology/approach - The method proposed is based on Fourier transform methods for computing risk measures. The authors obtain the loss distribution by fitting a cubic spline through the points where Fourier inversion of the characteristic function is applied. From the loss distribution, the authors calculate value-at-risk and expected shortfall. As for the calculation of the entropic value-at-risk, it involves the moment generating function which is closely related to the characteristic function. The expectile risk measure is calculated based on call and put option prices which are available in a semi-closed form by Fourier inversion of the characteristic function. We also consider mean loss, standard deviation and semivariance which are calculated in a similar manner. Findings - The study offers practical insights into the efficient computation of risk measures as well as validation of the risk models. It also provides a detailed description of algorithms to compute each of the risk measures considered. While the main focus of the paper is on portfolio-level risk metrics, all algorithms are also applicable to single instruments. Practical implications - The algorithms presented in this paper require little computational effort which makes them very suitable for real-world applications. In addition, the mathematical setup adopted in this paper provides a natural framework for risk model validation which makes the approach presented in this paper particularly appealing in practice. Originality/value - This is the first study to consider the computation of entropic value-at-risk, semivariance as well as expectile risk measure using Fourier transform method.
Suggested Citation
Ngoc Quynh Anh Nguyen & Thi Ngoc Trang Nguyen, 2017.
"Risk measures computation by Fourier inversion,"
Journal of Risk Finance, Emerald Group Publishing Limited, vol. 18(1), pages 76-87, January.
Handle:
RePEc:eme:jrfpps:jrf-03-2016-0034
DOI: 10.1108/JRF-03-2016-0034
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jrfpps:jrf-03-2016-0034. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.