IDEAS home Printed from https://ideas.repec.org/a/eme/jrfpps/15265941311301170.html
   My bibliography  Save this article

Optimal insurance risk allocation with steepest ascent and genetic algorithms

Author

Listed:
  • SiewMun Ha

Abstract

Purpose - Enhanced risk management through the application of mathematical optimization is the next competitive‐advantage frontier for the primary‐insurance industry. The widespread adoption of catastrophe models for risk management provides the opportunity to exploit mathematical optimization techniques to achieve superior financial results over traditional methods of risk allocation. The purpose of this paper is to conduct a numerical experiment to evaluate the relative performances of the steepest‐ascent method and genetic algorithm in the solution of an optimal risk‐allocation problem in primary‐insurance portfolio management. Design/methodology/approach - The performance of two well‐established optimization methods – steepest ascent and genetic algorithm – are evaluated by applying them to solve the problem of minimizing the catastrophe risk of a US book of policies while concurrently maintaining a minimum level of return. Findings - The steepest‐ascent method was found to be functionally dependent on, but not overly sensitive to, choice of initial starting policy. The genetic algorithm produced a superior solution to the steepest‐ascent method at the cost of increased computation time. Originality/value - The results provide practical guidelines for algorithm selection and implementation for the reader interested in constructing an optimal insurance portfolio from a set of available policies.

Suggested Citation

  • SiewMun Ha, 2013. "Optimal insurance risk allocation with steepest ascent and genetic algorithms," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 14(2), pages 129-139, February.
  • Handle: RePEc:eme:jrfpps:15265941311301170
    DOI: 10.1108/15265941311301170
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/15265941311301170/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/15265941311301170/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/15265941311301170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jrfpps:15265941311301170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.